Advertisement

Oecologia

, Volume 178, Issue 2, pp 415–425 | Cite as

Individual specialization in the foraging habits of female bottlenose dolphins living in a trophically diverse and habitat rich estuary

  • Sam RossmanEmail author
  • Peggy H. Ostrom
  • Megan Stolen
  • Nélio B. Barros
  • Hasand Gandhi
  • Craig A. Stricker
  • Randall S. Wells
Population ecology - Original research

Abstract

We examine individual specialization in foraging habits (foraging habitat and trophic level) of female bottlenose dolphins (Tursiops truncatus) resident in Sarasota Bay, Florida, USA, by analyzing time series of stable isotope (δ15N and δ13C) values in sequential growth layer groups within teeth. The isotope data provide a chronology of foraging habits over the lifetime of the individual and allowed us to show that female bottlenose dolphins exhibit a high degree of individual specialization in both foraging habitat and trophic level. The foraging habits used by adult females are similar to those they used as calves and may be passed down from mother to calf through social learning. We also characterized the foraging habits and home range of each individual by constructing standard ellipses from isotope values and dolphin sightings data (latitude and longitude), respectively. These data show that Sarasota Bay bottlenose dolphins forage within a subset of the habitats in which they are observed. Moreover, females with similar observational standard ellipses often possessed different foraging specializations. Female bottlenose dolphins may demonstrate individual specialization in foraging habits because it reduces some of the cost of living in groups, such as competition for prey.

Keywords

Bottlenose dolphin Tursiops truncatus Individual specialization Stable isotopes Individual niche 

Notes

Acknowledgments

We thank the many Mote Marine Laboratory and Chicago Zoological Society staff members, interns, and volunteers who made this work. We especially thank Sarasota Dolphin Research Program staff Jason Allen, Elizabeth Berens McCabe, Krystan Wilkinson, Katie McHugh, Aaron Barleycorn and the Mote Marine Laboratory’s Stranding Investigations Program staff for samples from dolphin carcasses. Samples from dolphins were collected under a series of National Marine Fisheries Service Scientific Research Permits since 1984 and Mote Marine Laboratory IACUC approvals. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (0802267) as well as Marine Mammal Commission Contract #E4047334. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government, Hubbs-Sea World Research Institute, Mote Marine Lab, Chicago Zoological Society or Michigan State University.

References

  1. Barros NB, Wells R (1998) Prey and feeding patterns of resident bottlenose dolphins (Tursiops truncatus) in Sarasota Bay, Florida. J Mammal 79:1045–1059CrossRefGoogle Scholar
  2. Berens McCabe E, Gannon D, Barros N, Wells R (2010) Prey selection by resident common bottlenose dolphins (Tursiops truncatus) in Sarasota Bay, Florida. Mar Biol 157:931–942. doi: 10.1007/s00227-009-1371-2 CrossRefGoogle Scholar
  3. Bolker BM et al (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. doi: 10.1016/j.tree.2008.10.008 CrossRefPubMedGoogle Scholar
  4. Bolnick DI et al (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28CrossRefPubMedGoogle Scholar
  5. Connor RC (2000) Group living in whales and dolphins. In: Mann J, Connor RC, Tyack PL, Whitehead H (eds) Cetacean societies: field studies of dolphins and whales. University of Chicago Press, Chicago, pp 199–218Google Scholar
  6. Darimont CT, Paquet PC, Reimchen TE (2007) Stable isotopic niche predicts fitness of prey in a wolf-deer system. Biol J Linn Soc 90:125–137. doi: 10.1111/j.1095-8312.2007.00716.x CrossRefGoogle Scholar
  7. Gelman A, Hill J (2006) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  8. Gelman A, Meng XL, Stern H (1996) Posterior predictive assessment of model fitness via realized discrepancies. Stat Sin 6:733–760Google Scholar
  9. Gelman A, Hwang J, Vehtari A (2013) Understanding predictive information criteria for Bayesian models. Stat Comput. doi: 10.1007/s11222-013-9416-2 Google Scholar
  10. Harrigan P, Zieman JC, Macko SA (1989) The base of nutritional support for the gray snapper (Lutjanus griseus): an evaluation based on a combined stomach content and stable isotope analysis. Bull Mar Sci 44:65–77Google Scholar
  11. Hohn AA, Scott MD, Wells RS, Sweeney JC, Irvine AB (1989) Growth layers in teeth from known-age, free-ranging bottlenose dolphins. Mar Mamm Sci 5:315–342CrossRefGoogle Scholar
  12. Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER: stable isotope Bayesian ellipses in R. J Anim Ecol 80:595–602. doi: 10.1111/j.1365-2656.2011.01806.x CrossRefPubMedGoogle Scholar
  13. Johnson CK et al (2009) Prey choice and habitat use drive sea otter pathogen exposure in a resource-limited coastal system. Proc Natl Acad Sci USA 106:2242–2247. doi: 10.1073/pnas.0806449106 CrossRefPubMedCentralPubMedGoogle Scholar
  14. Kery M (2010) Introduction to WinBUGS for ecologists. Academic, LondonGoogle Scholar
  15. Koch PL (2007) Isotopic study of the biology of modern and fossil vertebrates. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science, 2nd edn. Blackwell, Malden, pp 99–154Google Scholar
  16. Layman CA et al (2011) Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol Rev Camb Philos Soc 87:545–562. doi: 10.1111/j.1469-185X.2011.00208.x CrossRefPubMedGoogle Scholar
  17. Lewis R, O’Connell TC, Lewis M, Campagna C, Rus Hoelzel A (2006) Sex-specific foraging strategies and resource partitioning in the southern elephant seal (Mirounga leonina). Proc R Soc Lond B 273:2901–2907. doi: 10.1098/rspb.2006.3642 CrossRefGoogle Scholar
  18. Mann J, Sargeant B (2003) Like mother, like calf: the ontogeny of foraging traditions in wild Indian Ocean bottlenose dolphins (Tursiops sp.). In: Fragaszy D, Perry S (eds) The biology of traditions: models and evidence. Cambridge University Press, Cambridge, pp 236–266Google Scholar
  19. Mann J, Connor RC, Barre LM, Heithaus MR (2000) Female reproductive success in bottlenose dolphins (Tursiops sp.): life history, habitat, provisioning, and group-size effects. Behav Ecol 11:210–219. doi: 10.1093/beheco/11.2.210 CrossRefGoogle Scholar
  20. Matich P, Heithaus MR, Layman CA (2011) Contrasting patterns of individual specialization and trophic coupling in two marine apex predators. J Anim Ecol 80:294–305. doi: 10.1111/j.1365-2656.2010.01753.x CrossRefPubMedGoogle Scholar
  21. Matthews B, Mazumder A (2004) A critical evaluation of intrapopulation variation of δ13C and isotopic evidence of individual specialization. Oecologia 140:361–371. doi: 10.1007/s00442-004-1579-2 CrossRefPubMedGoogle Scholar
  22. McHugh KA, Allen JB, Barleycorn AA, Wells RS (2011) Natal philopatry, ranging behavior, and habitat selection of juvenile bottlenose dolphins in Sarasota Bay, Florida. J Mammal 92:1298–1313. doi: 10.1644/11-mamm-a-026.1 CrossRefGoogle Scholar
  23. Mendes S, Newton J, Reid RJ, Zuur AF, Pierce GJ (2006) Stable carbon and nitrogen isotope ratio profiling of sperm whale teeth reveals ontogenetic movements and trophic ecology. Oecologia 151:605–615. doi: 10.1007/s00442-006-0612-z CrossRefPubMedGoogle Scholar
  24. Miller AK, Karnovsky NJ, Trivelpiece WZ (2009) Flexible foraging strategies of gentoo penguins Pygoscelis papua over 5 years in the South Shetland Islands, Antarctica. Mar Biol 156:2527–2537. doi: 10.1007/s00227-009-1277-z CrossRefGoogle Scholar
  25. Montevecchi WA, Benvenuti S, Garthe S, Davoren GK, Fifield D (2009) Flexible foraging tactics by a large opportunistic seabird preying on forage-and large pelagic fishes. Mar Ecol Prog Ser 385:295–306. doi: 10.3354/meps08006 CrossRefGoogle Scholar
  26. Newsome SD, Etnier MA, Monson DH, Fogel ML (2009a) Retrospective characterization of ontogenetic shifts in killer whale diets via δ13C and δ15N analysis of teeth. Mar Ecol Prog Ser 374:229–242. doi: 10.3354/meps07747 CrossRefGoogle Scholar
  27. Newsome SD et al (2009b) Using stable isotopes to investigate individual diet specialization in California sea otters (Enhydra lutris nereis). Ecology 90:961–974. doi: 10.1890/07-1812.1 CrossRefPubMedGoogle Scholar
  28. Newsome SD, Clementz MT, Koch PL (2010) Using stable isotope biogeochemistry to study marine mammal ecology. Mar Mamm Sci 26:509–572. doi: 10.1111/j.1748-7692.2009.00354.x Google Scholar
  29. Parnell A, Jackson A (2013) Stable Isotope Analysis in R (v. 4.2). http://cran.r-project.org/web/packages/siar/index.html
  30. Perrin WF, Reilly SB (1984) Reproductive parameters of dolphins and small whales of the family Delphinidae. Report of the International Whaling Commission, Special, pp 97–134Google Scholar
  31. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Evol Syst 18:293–320CrossRefGoogle Scholar
  32. Plummer M (2003) JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In: Proceedings of the third international workshop on distributed statistical computing. R Project for Statistical Computing, Vienna, AustriaGoogle Scholar
  33. R Development Core Team (2013) R: a language and environment for statistical computing, 3.0.1 edition. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  34. Riccialdelli L, Newsome SD, Dellabianca NA, Bastida R, Fogel ML, Goodall RNP (2013) Ontogenetic diet shift in Commerson’s dolphin (Cephalorhynchus commersonii commersonii) off Tierra del Fuego. Polar Biol 36:617–627. doi: 10.1007/s00300-013-1289-5 CrossRefGoogle Scholar
  35. Rossman S et al (2013) Retrospective analysis of bottlenose dolphin foraging: a legacy of anthropogenic ecosystem disturbance. Mar Mamm Sci 29:705–718. doi: 10.1111/j.1748-7692.2012.00618.x Google Scholar
  36. Rossman S et al (2014) Foraging habits in a generalist predator: sex and age influence habitat selection and resource use among bottlenose dolphins (Tursiops truncatus). Mar Mamm Sci. doi: 10.1111/mms.12143 Google Scholar
  37. Sargeant BL, Mann J (2009) From social learning to culture: Intrapopulation variation in bottlenose dolphins. In: Laland KN, Galef BG (eds) The question of animal culture. Harvard University Press, Cambridge, pp 152–173Google Scholar
  38. Sheng YP, Peene S (1992) Circulation and its effect on water quality. In: Roat P, Ciccolella C, Smith H, Tomasko D (eds) Sarasota Bay framework for action: Sarasota, Fla., Sarasota Bay National Estuary Program, pp 5.1–5.18Google Scholar
  39. Tenan S, O’Hara RB, Hendriks I, Tavecchia G (2014) Bayesian model selection: the steepest mountain to climb. Ecol Model 283:62–69. doi: 10.1016/j.ecolmodel.2014.03.017 CrossRefGoogle Scholar
  40. Tinker MT, Mangel M, Estes JA (2009) Learning to be different: acquired skills, social learning, frequency dependence, and environmental variation can cause behaviourally mediated foraging specializations. Evol Ecol Res 11:841–869Google Scholar
  41. Vander Zanden HB, Bjorndal KA, Bolten AB (2013) Temporal consistency and individual specialization in resource use by green turtles in successive life stages. Oecologia 173:767–777. doi: 10.1007/s00442-013-2655-2 CrossRefPubMedGoogle Scholar
  42. Wells RS (2003) Dolphin social complexity: lessons from long-term study and life history. In: de Waal FBM, Tyack PL (eds) Animal social complexity: intelligence, culture, and individualized societies. Harvard University Press, Cambridge, pp 32–56Google Scholar
  43. Wells RS (2009) Learning from nature: bottlenose dolphin care and husbandry. Zoo Biol 28:1–17. doi: 10.1002/zoo.20252 CrossRefGoogle Scholar
  44. Wells RS, Scott MD (1999) Bottlenose dolphins Tursiops truncatus (Montagu, 1821). In: Ridgway SH, Harrison R (eds) Handbook of marine mammals: the second book of dolphins and porpoises, vol 6. Academic, San Diego, pp 137–182Google Scholar
  45. Wells RS et al (2014a) Social structure and life history of common bottlenose dolphins near Sarasota Bay, Florida: Insights from four decades and five generations. In: Yamagiwa J, Karczmarski L (eds) Primates and cetaceans: field research and conservation of complex mammalian societies. Springer, Tokyo, pp 149–172CrossRefGoogle Scholar
  46. Wells RS et al (2014b) Carcass-recovery rates for resident bottlenose dolphins in Sarasota Bay, FL. Mar Mamm Sci. doi: 10.1111/mms.12142 Google Scholar
  47. Wilkinson K (2014) An analysis of shark bites on resident bottlenose dolphins (Tursiops truncatus) in Sarasota Bay, Florida and implications for habitat use. Master’s thesis, University of Florida, GainesvilleGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sam Rossman
    • 1
    • 2
    Email author
  • Peggy H. Ostrom
    • 1
  • Megan Stolen
    • 2
  • Nélio B. Barros
    • 3
  • Hasand Gandhi
    • 1
  • Craig A. Stricker
    • 4
  • Randall S. Wells
    • 3
  1. 1.Department of Integrative BiologyMichigan State UniversityEast LansingUSA
  2. 2.Hubbs-Sea World Research InstituteMelbourne BeachUSA
  3. 3.Sarasota Dolphin Research ProgramChicago Zoological SocietySarasotaUSA
  4. 4.US Geological SurveyFort Collins Science CenterDenverUSA

Personalised recommendations