Advertisement

Oecologia

, Volume 178, Issue 3, pp 915–929 | Cite as

How will the greening of the Arctic affect an important prey species and disturbance agent? Vegetation effects on arctic ground squirrels

  • H. C. Wheeler
  • J. D. Chipperfield
  • C. Roland
  • J.-C. Svenning
Global change ecology - Original research

Abstract

Increases in terrestrial primary productivity across the Arctic and northern alpine ecosystems are leading to altered vegetation composition and stature. Changes in vegetation stature may affect predator–prey interactions via changes in the prey’s ability to detect predators, changes in predation pressure, predator identity and predator foraging strategy. Changes in productivity and vegetation composition may also affect herbivores via effects on forage availability and quality. We investigated if height-dependent effects of forage and non-forage vegetation determine burrowing extent and activity of arctic ground squirrels (Urocitellus parryii). We collected data on burrow networks and activity of arctic ground squirrels across long-term vegetation monitoring sites in Denali National Park and Preserve, Alaska. The implications of height-specific cover of potential forage and non-forage vegetation on burrowing behaviour and habitat suitability for arctic ground squirrels were investigated using hierarchical Bayesian modelling. Increased cover of forbs was associated with more burrows and burrow systems, and higher activity of systems, for all forb heights. No other potential forage functional group was related to burrow distribution and activity. In contrast, height-dependent negative effects of non-forage vegetation were observed, with cover over 50-cm height negatively affecting the number of burrows, systems and system activity. Our results demonstrate that increases in vegetation productivity have dual, potentially counteracting effects on arctic ground squirrels via changes in forage and vegetation stature. Importantly, increases in tall-growing woody vegetation (shrubs and trees) have clear negative effects, whereas increases in forb should benefit arctic ground squirrels.

Keywords

Climate change Predation risk Shrub encroachment Shrubification Vegetation structure 

Notes

Acknowledgments

This article is a contribution by the Center for Informatics Research on Complexity in Ecology (CIRCE), funded by the Aarhus University Research Foundation under the AU Ideas program (H. W., J. C. S.), a Murie Science and Learning Research Fellowship from Alaska Geographic (H. W.) and by the Central Alaska Network of the National Park Service (C. R.). J. D. C. was supported by a grant from the Rhineland-Palatinate Ministry of Education, Science, Youth and Culture (The consequences of global change on biological resources, legislation and setting of standards), and by the NoAClim project grant (number 225005) of the Norge Forskningsråd. We thank T. Karels and two anonymous reviewers for helpful comments on the manuscript. We thank L. C. Dempsey, C. Gibson, R. Noel, A. Carlyle and M. Richard for assistance with fieldwork. We thank C. McIntyre and L. Tyrrell for helpful discussions and logistical support.

Supplementary material

442_2015_3240_MOESM1_ESM.tif (3.4 mb)
Supplementary material 1 (TIFF 3,501 kb)
442_2015_3240_MOESM2_ESM.pdf (536 kb)
Supplementary material 2 (PDF 535 kb)
442_2015_3240_MOESM3_ESM.pdf (674 kb)
Supplementary material 3 (PDF 673 kb)
442_2015_3240_MOESM4_ESM.pdf (583 kb)
Supplementary material 4 (PDF 583 kb)

References

  1. Aaltonen K, Bryant AA, Hostetler JA, Oli MK (2009) Reintroducing endangered Vancouver Island marmots: survival and cause-specific mortality rates of captive-born versus wild-born individuals. Biol Conserv 142:2181–2190. doi: 10.1016/j.biocon.2009.04.019 CrossRefGoogle Scholar
  2. Aunapuu M, Dahlgren J, Oksanen T, Grellmann D, Oksanen L, Olofsson J, Rammul U, Schneider M, Johansen B, Hygen HO (2008) Spatial patterns and dynamic responses of arctic food webs corroborate the exploitation ecosystems hypothesis (EEH). Am Nat 171:249–262PubMedCrossRefGoogle Scholar
  3. Barker OE, Derocher AE (2010) Habitat selection by arctic ground squirrels (Spermophilus parryii). J Mamm 91:1251–1260. doi: 10.1644/10-mamm-a-030.1 CrossRefGoogle Scholar
  4. Batzli GO, Sobaski ST (1980) Distribution, abundance, and foraging patterns of ground squirrels near Atkasook. Alaska Arct Antarct Alp Res 12:501–510. doi: 10.2307/1550497 CrossRefGoogle Scholar
  5. Batzli GO, White RG, MacLean SF, Pitelka FA, Collier BD (1980) The herbivore-based trophic system. In: Brown J, Miller PC, Tieszen LL, Bunnell FL (eds). An Arctic ecosystem: the coastal tundra at barrow, Alaska. Dowden, Hutchinson & Ross, StroudburgGoogle Scholar
  6. Bennett RP (1999) Effects of food quality on growth and survival of juvenile Columbian ground squirrels (Spermophilus columbianus). Can J Zool 77:1555–1561. doi: 10.1139/z99-144 CrossRefGoogle Scholar
  7. Blinnikov MS, Gaglioti BV, Walker DA, Wooller MJ, Zazula GD (2011) Pleistocene graminoid-dominated ecosystems in the Arctic. Quat Sci Rev 30:2906–2929. doi: 10.1016/j.quascirev.2011.07.002 CrossRefGoogle Scholar
  8. Blumstein DT, Ozgul A, Yovovich V, van Vuren DH, Armitage KB (2006) Effect of predation risk on the presence and persistence of yellow-bellied marmot (Marmota flaviventris) colonies. J Zool 270:132–138. doi: 10.1111/j.1469-7998.2006.00098.x Google Scholar
  9. Brooks SP, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Gr Stat 7:434–455. doi: 10.1080/10618600.1998.10474787 Google Scholar
  10. Buck CL, Barnes BM (1999a) Annual cycle of body composition and hibernation in free-living arctic ground squirrels. J Mamm 80:430–442. doi: 10.2307/1383291 CrossRefGoogle Scholar
  11. Buck CL, Barnes BM (1999b) Temperatures of hibernacula and changes in composition of arcitic ground squirrels over winter. J Mamm 80:1264–1276CrossRefGoogle Scholar
  12. Byrom AE, Krebs CJ (1999) Natal dispersal of juvenile arctic ground squirrels in the boreal forest. Can J Zool 77:1048–1059CrossRefGoogle Scholar
  13. Byrom AE, Karels TJ, Krebs CJ, Boonstra R (2000) Experimental manipulation of predation and food supply of arctic ground squirrels in the boreal forest. Can J Zool 78:1309–1319. doi: 10.1139/cjz-78-8-1309 CrossRefGoogle Scholar
  14. Carey HV (1985) Nutritional ecology of yellow-bellied marmots in the white mountains of California. Ecography 8:259–264CrossRefGoogle Scholar
  15. Carl EA (1971) Population control in arctic ground squirrels. Ecology 52:395–413. doi: 10.2307/1937623 CrossRefGoogle Scholar
  16. Creel S, Christianson D (2008) Relationships between direct predation and risk effects. Trends Ecol Evol 23:194–201. doi: 10.1016/j.tree.2007.12.004 PubMedCrossRefGoogle Scholar
  17. Davidson AD, Detling JK, Brown JH (2012) Ecological roles and conservation challenges of social, burrowing, herbivorous mammals in the world’s grasslands. Front Ecol Environ 10:477–486. doi: 10.1890/110054 CrossRefGoogle Scholar
  18. Densmore RV (2008) Evidence for higher soil temperature and potassium promoting invasion of the Common Dandelion, Taraxacum officinale, in Denali National Park and Preserve Alaska. Can Field Nat 112:67–69Google Scholar
  19. Dingman SL, Koutz FR (1974) Relations among vegetation, permafrost, and potential insolation in Central Alaska. Arct Antarct Alp Res 6:37–47CrossRefGoogle Scholar
  20. Donker SA, Krebs CJ (2011) Habitat-specific distribution and abundance of arctic ground squirrels (Urocitellus parryii plesius) in southwest Yukon. Can J Zool 89:570–576. doi: 10.1139/z11-041 CrossRefGoogle Scholar
  21. Donker SA, Krebs CJ (2012) Evidence for source-sink dynamics in a regional population of arctic ground squirrels (Urocitellus parryii plesius). Wildl Res 39:163–170. doi: 10.1071/wr11167 CrossRefGoogle Scholar
  22. Elmendorf SC, Henry GHR, Hollister RD, Bjork RG, Bjorkman AD, Callaghan TV, Collier LS, Cooper EJ, Cornelissen JHC, Day TA, Fosaa AM, Gould WA, Gretarsdottir J, Harte J, Hermanutz L, Hik DS, Hofgaard A, Jarrad F, Jonsdottir IS, Keuper F, Klanderud K, Klein JA, Koh S, Kudo G, Lang SI, Loewen V, May JL, Mercado J, Michelsen A, Molau U, Myers-Smith IH, Oberbauer SF, Pieper S, Post E, Rixen C, Robinson CH, Schmidt NM, Shaver GR, Stenstrom A, Tolvanen A, Totland O, Troxler T, Wahren CH, Webber PJ, Welker JM, Wookey PA (2012) Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol Lett 15:164–175. doi: 10.1111/j.1461-0248.2011.01716.x PubMedCrossRefGoogle Scholar
  23. Epstein HE, Beringer J, Gould WA, Lloyd AH, Thompson CD, Chapin FS, Michaelson GJ, Ping CL, Rupp TS, Walker DA (2004) The nature of spatial transitions in the Arctic. J Biogeogr 31:1917–1933. doi: 10.1111/j.1365-2699.2004.01140.x CrossRefGoogle Scholar
  24. Evju M, Halvorsen R, Rydgren K, Austrheim G, Mysterud A (2010) Interactions between local climate and grazing determine the population dynamics of the small herb Viola biflora. Oecologia 163:921–933. doi: 10.1007/s00442-010-1637-x PubMedCrossRefGoogle Scholar
  25. Gálvez-Bravo L, López-Pintor A, Rebollo S, Gómez-Sal A (2011) European rabbit (Oryctolagus cuniculus) engineering effects promote plant heterogeneity in Mediterranean dehesa pastures. J Arid Environ 75:779–786. doi: 10.1016/j.jaridenv.2011.03.015 CrossRefGoogle Scholar
  26. Garin I, Aldezabal A, Herrero J, Garcia-Serrano A, Remón (2008) Diet selection of the Alpine marmot (Marmota m. marmota L.) in the Pyrenees. Rev Ecol 63:383–390Google Scholar
  27. Gauthier G, Berteaus D, Bȇty J, Arnaud T, Therrien J, McKinnon L, Legagneux P, Cadieux M (2011) The tundra food web of Bylot Island in a changing climate and the role of exchanges between ecolsystems. Ecoscience 18:223–235CrossRefGoogle Scholar
  28. Gauthier G, Bêty J, Cadieux M-C, Legagneux P, Doiron M, Chevallier C, Lai S, Tarroux A, Berteaux D (2013) Long-term monitoring at multiple trophic levels suggests heterogeneity in responses to climate change in the Canadian Arctic tundra. Philos Trans R Soc B Biol Sci 368:20120482. doi: 10.1098/rstb.2012.0482 CrossRefGoogle Scholar
  29. Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–472. doi: 10.1214/ss/1177011136 CrossRefGoogle Scholar
  30. Gillis EA, Hik DS, Boonstra R, Karels TJ, Krebs CJ (2005a) Being high is better: effects of elevation and habitat on arctic ground squirrel demography. Oikos 108:231–240. doi: 10.1111/j.0030-1299.2005.13535.x CrossRefGoogle Scholar
  31. Gillis EA, Morrison SF, Zazula GD, Hik DS (2005b) Evidence for selective caching by arctic ground squirrels living in alpine meadows in the Yukon. Arctic 58:354–360. doi: 10.14430/arctic449 Google Scholar
  32. Gough L, Moore JC, Shaver GR, Simpson RT, Johnson DR (2012) Above- and belowground responses of arctic tundra ecosystems to altered soil nutrients and mammalian herbivory. Ecology 93:1683–1694. doi: 10.1890/11-1631.1 PubMedCrossRefGoogle Scholar
  33. Hannon MJ, Jenkins SH, Crabtree RL, Swanson AK (2006) Visibility and vigilance: behavior and population ecology of Uinta ground squirrels (Spermophilus armatus) in different habitats. J Mamm 87:287–295. doi: 10.1644/05-MAMM-A-081R2.1 CrossRefGoogle Scholar
  34. Hansen BB, Aanes R, Herfindal I, Kohler J, Sæther B-E (2011) Climate, icing, and wild arctic reindeer: past relationships and future prospects. Ecology 92:1917–1923. doi: 10.1890/11-0095.1 PubMedCrossRefGoogle Scholar
  35. Hawkes CV, Sullivan JJ (2001) The impact of herbivory on plants in different resource conditions: a meta-analysis. Ecology 82:2045–2058. doi:10.1890/0012-9658(2001)082[2045:tiohop]2.0.co;2Google Scholar
  36. Henry GR, Harper K, Chen W, Deslippe J, Grant R, Lafleur P, Lévesque E, Siciliano S, Simard S (2012) Effects of observed and experimental climate change on terrestrial ecosystems in northern Canada: results from the Canadian IPY program. Clim Change 115:207–234. doi: 10.1007/s10584-012-0587-1 CrossRefGoogle Scholar
  37. Hill VL, Florant GL (1999) Patterns of fatty acid composition in free-ranging yellow-bellied marmots (Marmota flaviventris) and their diet. Can J Zool 77:1494–1503CrossRefGoogle Scholar
  38. Hoset KS, Kyrö K, Oksanen T, Oksanen L, Olofsson J (2014) Spatial variation in vegetation damage relative to primary productivity, small rodent abundance and predation. Ecography 37:894–901. doi: 10.1111/ecog.00791 CrossRefGoogle Scholar
  39. Huntly NJ (1987) Influence of refuging consumers (Pikas: Ochotona princeps) on subalpine meadow vegetation. Ecology 68:274–283. doi: 10.2307/1939258 CrossRefGoogle Scholar
  40. Ibrahim JG, Laud PW (1991) On Bayesian analysis of generalized linear models using Jeffreys’s prior. J Am Stat Assoc 86:981–986. doi: 10.2307/2290514 CrossRefGoogle Scholar
  41. Jia GJ, Epstein HE, Walker DA (2003) Greening of arctic Alaska, 1981–2001. Geophys Res Lett 30:2067. doi: 10.1029/2003gl018268 CrossRefGoogle Scholar
  42. Karels TJ, Boonstra R (1999) The impact of predation on burrow use by Arctic ground squirrels in the boreal forest. Proc R Soc B Biol Sci 266:2117–2123. doi: 10.1098/rspb.1999.0896 CrossRefGoogle Scholar
  43. Karels TJ, Boonstra R (2000) Concurrent density dependence and independence in populations of arctic ground squirrels. Nature 408:460–463. doi: 10.1038/35044064 PubMedCrossRefGoogle Scholar
  44. Karels TJ, Byrom AE, Boonstra R, Krebs CJ (2000) The interactive effects of food and predators on reproduction and overwinter survival of arctic ground squirrels. J Anim Ecol 69:235–247CrossRefGoogle Scholar
  45. Kauffman MJ, Varley N, Smith DW, Stahler DR, MacNulty DR, Boyce MS (2007) Landscape heterogeneity shapes predation in a newly restored predator–prey system. Ecol Lett 10:690–700. doi: 10.1111/j.1461-0248.2007.01059.x PubMedCrossRefGoogle Scholar
  46. Lehrer EW, Schooley RL, Whittington JK (2011) Survival and antipredator behavior of woodchucks (Marmota monax) along an urban–agricultural gradient. Can J Zool 90:12–21. doi: 10.1139/z11-107 CrossRefGoogle Scholar
  47. Lyman C (2013) Hibernation and torpor in mammals and birds. Elsevier (eBook)Google Scholar
  48. McKendrick JD, Batzli GO, Everett KR, Swanson JC (1980) Some effects of mammalian herbivores and fertilization on tundra soils and vegetation. Arct Antact Alp Res 12:565–578. doi: 10.2307/1550501 CrossRefGoogle Scholar
  49. McLean IG (1985) Seasonal patterns and sexual differences in the feeding ecology of arctic ground squirrels (Spermophilus parryii plesius). Can J Zool 63:1298–1301. doi: 10.1139/z85-195 CrossRefGoogle Scholar
  50. Morrison P, Galster W (1975) Patterns of hibernation in the arctic ground squirrel. Can J Zool 53:1345–1355. doi: 10.1139/z75-160 PubMedCrossRefGoogle Scholar
  51. Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias-Fauria M, Sass-Klaassen U, Levesque E, Boudreau S, Ropars P, Hermanutz L, Trant A, Collier LS, Weijers S, Rozema J, Rayback SA, Schmidt NM, Schaepman-Strub G, Wipf S, Rixen C, Menard CB, Venn S, Goetz S, Andreu-Hayles L, Elmendorf S, Ravolainen V, Welker J, Grogan P, Epstein HE, Hik DS (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6:045509. doi: 10.1088/1748-9326/6/4/045509 CrossRefGoogle Scholar
  52. Normand S, Randin C, Ohlemüller R, Bay C, Høye TT, Kjær ED, Körner C, Lischke H, Maiorano L, Paulsen J, Pearman PB, Psomas A, Treier UA, Zimmermann NE, Svenning J-C (2013) A greener greenland? Climatic potential and long-term constraints on future expansions of trees and shrubs. Philos Trans R Soc B Biol Sci 368:20120479. doi: 10.1098/rstb.2012.0479 CrossRefGoogle Scholar
  53. Oksanen L (1983) Trophic exploitation and arctic phytomass patterns. Am Nat 122:45–52CrossRefGoogle Scholar
  54. Olofsson J, Oksanen L, Callaghan T, Hulme PE, Oksanen T, Suominen O (2009) Herbivores inhibit climate-driven shrub expansion on the tundra. Glob Change Biol 15:2681–2693. doi: 10.1111/j.1365-2486.2009.01935.x CrossRefGoogle Scholar
  55. Ordenana MA, van Vuren DH, Draper JP (2012) Habitat associations of California ground squirrels and Botta’s pocket gophers on levees in California. J Wildl Manage 76:1712–1717. doi: 10.1002/jwmg.402 CrossRefGoogle Scholar
  56. Ovens C (2011) Kinship and use of underground space by adult female Richardson’s ground squirrels (Urocitellus richarsonii). Master’s thesis, University of Lethbridge, CanadaGoogle Scholar
  57. Pearson RG, Phillips SJ, Loranty MM, Beck PSA, Damoulas T, Knight SJ, Goetz SJ (2013) Shifts in Arctic vegetation and associated feedbacks under climate change. Nat Clim Change 3:673–677. doi: 10.1038/nclimate1858 CrossRefGoogle Scholar
  58. Plummer M (2003) JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In: Hornik K, Leisch F, Zeileis A (eds) Proceedings of the 3rd International Workshop on Distributed Statistical Computing, ViennaGoogle Scholar
  59. Post E, Forchhammer MC (2008) Climate change reduces reproductive success of an arctic herbivore through trophic mismatch. Philos Trans R Soc B Biol Sci 363:2367–2373. doi: 10.1098/rstb.2007.2207 CrossRefGoogle Scholar
  60. Post E, Pedersen C (2008) Opposing plant community responses to warming with and without herbivores. Proc Natl Acad Sci 105:12353–12358. doi: 10.1073/pnas.0802421105 PubMedCentralPubMedCrossRefGoogle Scholar
  61. Price LW (1971) Geomorphic effect of the arctic ground squirrel in an alpine environment. Geogr Ann Ser A Phys Geogr 53:100–106. doi: 10.2307/520669 CrossRefGoogle Scholar
  62. Ravolainen VT, Bråthen KA, Yoccoz NG, Nguyen JK, Ims RA (2014) Complementary impacts of small rodents and semi-domesticated ungulates limit tall shrub expansion in the tundra. J Appl Ecol 51:234–241. doi: 10.1111/1365-2664.12180 CrossRefGoogle Scholar
  63. Roland CA, Oakley K, Debevec EM, Loomis T (2004) Monitoring vegetation structure and composition at multiple scales in the Central Alaska Network. NPS technical report CAKN-001. National Park Service, Fairbanks. http://science.nature.nps.gov/im-monitor/protocols/CAKN_Vegetation.zip. Accessed 28 November 2011
  64. Roland CA, Schmidt JH, Nicklen EF (2012) Landscape-scale patterns in tree occupancy and abundance in subarctic Alaska. Ecol Monogr 83:19–48. doi: 10.1890/11-2136.1 CrossRefGoogle Scholar
  65. Schooley RL, Sharpe PB, van Horne B (1996) Can shrub cover increase predation risk for a desert rodent? Canadian. J Zool 74:157–163. doi: 10.1139/z96-020 Google Scholar
  66. Sharma S, Couturier S, Côté SD (2009) Impacts of climate change on the seasonal distribution of migratory caribou. Glob Change Biol 15:2549–2562. doi: 10.1111/j.1365-2486.2009.01945.x CrossRefGoogle Scholar
  67. Sokolov V, Ehrich D, Yoccoz NG, Sokolov A, Lecomte N (2012) Bird communities of the arctic shrub tundra of Yamal: habitat specialists and generalists. PLoS ONE 7:e50335. doi: 10.1371/journal.pone.0050335 PubMedCentralPubMedCrossRefGoogle Scholar
  68. Stueve KM, Isaacs RE, Tyrrell LE, Densmore RV (2010) Spatial variability of biotic and abiotic tree establishment constraints across a treeline ecotone in the Alaska range. Ecology 92:496–506. doi: 10.1890/09-1725.1 CrossRefGoogle Scholar
  69. Sturm M, Racine C, Tape K (2001) Climate change: increasing shrub abundance in the Arctic. Nature 411:546–547. doi: 10.1038/35079180 PubMedCrossRefGoogle Scholar
  70. van Vuren DH (2001) Predation on yellow-bellied marmots (Marmota flaviventris). Am Midl Nat 145:94–100. doi:10.1674/0003-0031(2001)145[0094:poybmm]2.0.co;2Google Scholar
  71. Wahren CHA, Walker MD, Bret-Harte MS (2005) Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experiment. Glob Change Biol 11:537–552. doi: 10.1111/j.1365-2486.2005.00927.x CrossRefGoogle Scholar
  72. Wheeler HC (2012) Population, individual and behavioural approaches to understanding the implications of habitat change for arctic ground squirrels. University of Alberta, AlbertaGoogle Scholar
  73. Wheeler HC, Hik DS (2013) Arctic ground squirrels Urocitellus parryii as drivers and indicators of change in northern ecosystems. Mamm Rev 43:238–255. doi: 10.1111/j.1365-2907.2012.00220.x CrossRefGoogle Scholar
  74. Wheeler HC, Hik DS (2014) Giving-up densities and foraging behaviour indicate potential effect of shrub encroachment on arctic ground squirrels. Anim Behav 95:1–8CrossRefGoogle Scholar
  75. Willerslev E, Davison J, Moora M, Zobel M, Coissac E, Edwards ME, Lorenzen ED, Vestergard M, Gussarova G, Haile J, Craine J, Gielly L, Boessenkool S, Epp LS, Pearman PB, Cheddadi R, Murray D, Brathen KA, Yoccoz N, Binney H, Cruaud C, Wincker P, Goslar T, Alsos IG, Bellemain E, Brysting AK, Elven R, Sonstebo JH, Murton J, Sher A, Rasmussen M, Ronn R, Mourier T, Cooper A, Austin J, Moller P, Froese D, Zazula G, Pompanon F, Rioux D, Niderkorn V, Tikhonov A, Savvinov G, Roberts RG, MacPhee RDE, Gilbert MTP, Kjaer KH, Orlando L, Brochmann C, Taberlet P (2014) Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506:47–51. doi: 10.1038/nature12921 PubMedCrossRefGoogle Scholar
  76. Zamin TJ, Grogan P (2013) Caribou exclusion during a population low increases deciduous and evergreen shrub species biomass and nitrogen pools in low Arctic tundra. J Ecol 101:671–683. doi: 10.1111/1365-2745.12082 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • H. C. Wheeler
    • 1
  • J. D. Chipperfield
    • 2
    • 3
  • C. Roland
    • 4
  • J.-C. Svenning
    • 1
  1. 1.Department of Biodiversity, Center for Informatics Research on Complexity in Ecology (CIRCE)Aarhus UniversityAarhusDenmark
  2. 2.Ecological and Environmental Change Research Group, Department of BiologyUniversity of BergenBergenNorway
  3. 3.Department of Biogeograph, Fachbereich VIUniversität TrierTrierGermany
  4. 4.National Parks ServiceDenali National Park and PreserveFairbanksUSA

Personalised recommendations