Skip to main content
Log in

Global environmental change and the nature of aboveground net primary productivity responses: insights from long-term experiments

  • Special Topic: Coordinated approaches to global change research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Many global change drivers chronically alter resource availability in terrestrial ecosystems. Such resource alterations are known to affect aboveground net primary production (ANPP) in the short term; however, it is unknown if patterns of response change through time. We examined the magnitude, direction, and pattern of ANPP responses to a wide range of global change drivers by compiling 73 datasets from long-term (>5 years) experiments that varied by ecosystem type, length of manipulation, and the type of manipulation. Chronic resource alterations resulted in a significant change in ANPP irrespective of ecosystem type, the length of the experiment, and the resource manipulated. However, the pattern of ecosystem response over time varied with ecosystem type and manipulation length. Continuous directional responses were the most common pattern observed in herbaceous-dominated ecosystems. Continuous directional responses also were frequently observed in longer-term experiments (>11 years) and were, in some cases, accompanied by large shifts in community composition. In contrast, stepped responses were common in forests and other ecosystems (salt marshes and dry valleys) and with nutrient manipulations. Our results suggest that the response of ANPP to chronic resource manipulations can be quite variable; however, responses persist once they occur, as few transient responses were observed. Shifts in plant community composition over time could be important determinants of patterns of terrestrial ecosystem sensitivity, but comparative, long-term studies are required to understand how and why ecosystems differ in their sensitivity to chronic resource alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aber JD, Magill AH (2004) Chronic nitrogen additions at the Harvard Forest (USA): the first 15 years of a nitrogen saturation experiment. For Ecol Manag 196:1–5. doi:10.1016/j.foreco.2004.03.009

    Article  Google Scholar 

  • Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems. Bioscience 48:921–934. doi:10.2307/1313296

    Article  Google Scholar 

  • Adams HD, Guardiola-Claramonte M, Barron-Gafford GA, Villegas JC, Breshears DD, Zou CB, Troch PA, Huxman TE (2009) Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proc Natl Acad Sci USA 106:7063–7066. doi:10.1073/pnas.0901438106

  • Allan E, Weisser W, Weigelt A, Roscher C, Fischer M, Hillebrand H (2011) More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proc Natl Acad Sci USA 108:17034–17039. doi:10.1073/pnas.1104015108

  • Avolio ML, Koerner SE, La Pierre KJ, Wilcox KR, Wilson GWT, Smith MD, Collins SL (2014) Changes in plant community composition, not diversity, during a decade of nitrogen and phosphorus additions drive above-ground productivity in tallgrass prairie. J Ecol 102:1649–1660

    Article  CAS  Google Scholar 

  • Báez S, Collins S, Lightfoot D, Koontz T (2006) Effects of rodent removal on community dynamics in desert grassland and shrubland vegetation. Ecology 87:2746–2754. doi:10.1007/s00442-012-2552-0

    Article  PubMed  Google Scholar 

  • Barnosky AD, Hadly EA, Bascompte J, Berlow EL, Brown JH, Fortelius M, Getz WM, Harte J, Hastings A, Marquet PA, Martinez ND, Mooers A, Roopnarine P, Vermeij G, Williams JW, Gillespie R, Kitzes J, Marshall C, Matzke N, Mindell DP, Revilla E, Smith AB (2012) Approaching a state shift in Earth’s biosphere. Nature 486:52–58. doi:10.1038/nature11018

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle D, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Corrigendum: biodiversity loss and its impact on humanity. Nature 489:326. doi:10.1038/nature11373

    Article  CAS  Google Scholar 

  • Carpenter SR (2001) Alternate states of ecosystems: evidence and some implications. In: Press MC, Huntly N, Levin S (eds) Ecology: achievement and challenge. Blackwell, London, pp 357–381

    Google Scholar 

  • Chave J, Condit R, Muller-Landau HC, Thomas SC, Ashton PS, Bunyavejchewin S, Co LL, Dattaraja HS, Davies SJ, Esufali S, Ewango CEN, Feeley KJ, Foster RB, Gunatilleke N, Gunatilleke S, Hall P, Hart TB, Hernández C, Hubbell SP, Itoh A, Kiratiprayoon S, LaFrankie JV, De Lao SL, Makana JR, Noor MNS, Kassim AR, Samper C, Sukumar R, Suresh HS, Tan S, Thompson J, Tongco MDC, Valencia R, Vallejo M, Villa G, Yamakura T, Zimmerman JK, Losos EC (2008) Assessing evidence for a pervasive alteration in tropical tree communities. PLoS Biol 6:0455–0462. doi:10.1371/journal.pbio.0060045

    Article  CAS  Google Scholar 

  • Cherwin K, Knapp A (2012) Unexpected patterns of sensitivity to drought in three semi-arid grasslands. Oecologia 169:845–852. doi:10.1007/s00442-011-2235-2

    Article  PubMed  Google Scholar 

  • Clark CM, Tilman D (2008) Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451:712–715. doi:10.1038/nature06503

    Article  CAS  PubMed  Google Scholar 

  • Clark CM, Tilman D (2010) Recovery of plant diversity following N cessation: effects of recruitment, litter, and elevated N cycling. Ecology 91:3620–3630. doi:10.1890/09-1268.1

    Article  PubMed  Google Scholar 

  • Cleland EE, Allen JM, Crimmins TM, Dunne JA, Pau S, Travers SE, Zavaleta ES, Wolkovich EM (2012) Phenological tracking enables positive species responses to climate change. Ecology 93:1765–1771. doi:10.1890/11-1912.1

    Article  PubMed  Google Scholar 

  • Collins SL, Suding KN, Cleland EE, Batty M, Pennings SC, Gross KL, Grace JB, Gough L, Fargione JE, Clark CM (2008) Rank clocks and plant community dynamics. Ecology 89:3534–3541. doi:10.1890/07-1646.1

    Article  PubMed  Google Scholar 

  • Collins SL, Koerner SE, Plaut JA, Okie JG, Brese D, Calabrese LB, Carvajal A, Evansen RJ, Nonaka E (2012) Stability of tallgrass prairie during a 19-year increase in growing season precipitation. Funct Ecol 26:1450–1459. doi:10.1111/j.1365-2435.2012.01995.x

    Article  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142. doi:10.1111/j.1461-0248.2007.01113.x

    Article  PubMed  Google Scholar 

  • Fahey TJ, Knapp AK (2007) Principles and standards for measuring net primary production. Oxford University Press, Oxford

  • Foley JA, Defries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574. doi:10.1126/science.1111772

    Article  CAS  PubMed  Google Scholar 

  • Foster BL, Gross KL (1998) Species richness in a successional grassland: effects of nitrogen enrichment and plant litter. Ecology 79:2593–2602. doi:10.1890/0012-9658(1998)079[2593:SRIASG]2.0.CO;2

    Article  Google Scholar 

  • Fridley JD (2002) Resource availability dominates and alters the relationship between species diversity and ecosystem productivity in experimental plant communities. Oecologia 132:271–277. doi:10.1007/s00442-002-0965-x

    Article  Google Scholar 

  • Gough L, Hobbie SE (2003) Responses of moist non-acidic arctic tundra to altered environment: productivity, biomass, and species richness. Oikos 103:204–216. doi:10.1034/j.1600-0706.2003.12363.x

    Article  Google Scholar 

  • Gross KL, Willig MR, Gough L, Inouye R, Cox SB (2000) Patterns of species density and productivity at different spatial scales in herbaceous plant communities. Oikos 89:417. doi:10.1034/j.1600-0706.2000.890301.x

    Article  Google Scholar 

  • Hallett LM, Hsu JS, Cleland EE, Collins SL, Dickson TL, Farrer EC, Gherardi LA, Gross KL, Hobbs RJ, Turnbull L, Suding KN (2014) Biotic mechanisms contributing to the stability of primary productivity alternate along a gradient of precipitation variability. Ecology 95:1693–1700

    Article  PubMed  Google Scholar 

  • Halpern BS, Walbridge S, Selkoe Ka, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R, Heinemann D, Lenihan HS, Madin EMP, Perry MT, Selig ER, Spalding M, Steneck R, Watson R (2008) A global map of human impact on marine ecosystems. Science 319:948–952. doi:10.1126/science.1149345

    Article  CAS  PubMed  Google Scholar 

  • Hautier Y, Niklaus PA, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science 324:636–638. doi:10.1126/science.1169640

    Article  CAS  PubMed  Google Scholar 

  • Hedges LV, Olkin I (1985) Statistical methods for meta-analysis. Academic, New York

  • Hobbie SE, Gough L, Shaver GR (2005) Species compositional differences on different-aged glacial landscapes drive contrasting responses of tundra to nutrient addition. J Ecol 93:770–782. doi:10.1111/j.1365-2745.2005.01006.x

    Article  Google Scholar 

  • Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor MI (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–109. doi:10.1038/nature11118

    CAS  PubMed  Google Scholar 

  • Hudson JMG, Henry GHR (2010) High Arctic plant community resists 15 years of experimental warming. J Ecol 98:1035–1041. doi:10.1111/j.1365-2745.2010.01690.x

    Article  Google Scholar 

  • Huxman TE, Smith MD, Fay PA, Knapp AK, Shaw MR, Loik ME, Smith SD, Tissue DT, Zak JC, Weltzin JF, Pockman WT, Sala OE, Haddad BM, Harte J, Koch GW, Schwinning S, Small EE, Williams DG (2004) Convergence across biomes to a common rain-use efficiency. Nature 429:651–654. doi:10.1038/nature02561

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2013) Stoker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York

  • Isbell F, Reich PB, Tilman D, Hobbie SE, Polasky S, Binder S (2013) Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc Natl Acad Sci USA 110:11911–11916. doi:10.1073/pnas.1310880110

  • Jentsch A, Kreyling J, Elmer M, Gellesch E, Glaser B, Grant K, Hein R, Lara M, Mirzae H, Nadler SE, Nagy L, Otieno D, Pritsch K, Rascher U, Schädler M, Schloter M, Singh BK, Stadler J, Walter J, Wellstein C, Wöllecke J, Beierkuhnlein C (2011) Climate extremes initiate ecosystem-regulating functions while maintaining productivity. J Ecol 99:689–702. doi:10.1111/j.1365-2745.2011.01817.x

    Article  Google Scholar 

  • Jin Y, Goulden ML (2013) Ecological consequences of variation in precipitation: separating short- versus long-term effects using satellite data. Glob Ecol Biogeogr. doi:10.1111/geb.12135

    Google Scholar 

  • Jung V, Albert CH, Violle C, Kunstler G, Loucougaray G, Spiegelberger T (2014) Intraspecific trait variability mediates the response of subalpine grassland communities to extreme drought events. J Ecol 102:45–53. doi:10.1111/1365-2745.12177

    Article  Google Scholar 

  • Kitchen DJ, Blair JM, Callaham MA (2009) Annual fire and mowing alter biomass, depth distribution, and C and N content of roots and soil in tallgrass prairie. Plant Soil 323:235–247. doi:10.1007/s11104-009-9931-2

    Article  CAS  Google Scholar 

  • Knapp AK, Briggs JM, Smith MD (2012a) Annual fire and mowing alter biomass, depth distribution, and C and N content of roots and soil in tallgrass prairie. Funct Ecol 26:1231–1233

    Article  Google Scholar 

  • Knapp AK, Smith MD, Hobbie SE, Collins SL, Timothy J, Hansen GJA, Landis DA, La Pierre KJ, Melillo JM, Seastedt TR, Shaver GR, Webster JR (2012b) Past, present, and future roles of long-term experiments in the LTER network. Bioscience 62:377–389

    Article  Google Scholar 

  • Ladwig LM, Collins SL, Swann AL, Xia Y, Allen MF, Allen EB (2012) Above- and belowground responses to nitrogen addition in a Chihuahuan Desert grassland. Oecologia 169:177–185. doi:10.1007/s00442-011-2173-z

    Article  PubMed  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379. doi:10.1890/06-2057.1

    Article  PubMed  Google Scholar 

  • Leuzinger S, Luo Y, Beier C, Dieleman W, Vicca S, Körner C (2011) Do global change experiments overestimate impacts on terrestrial ecosystems? Trends Ecol Evol 26:236–241. doi:10.1016/j.tree.2011.02.011

    Article  PubMed  Google Scholar 

  • Lubchenco J (1998) Entering the century of the environment: a new social contract for science. Science 279:491–497. doi:10.1126/science.279.5350.491

    Article  CAS  Google Scholar 

  • Luo Y, Wan S, Hui D, Wallace LL (2001) Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413:622–625. doi:10.1038/35098065

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731. doi:10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2

    Article  Google Scholar 

  • Mariotte P, Vandenberghe C, Meugnier C, Rossi P, Bardgett RD, Buttler A (2013) Subordinate plant species impact on soil microbial communities and ecosystem functioning in grasslands: findings from a removal experiment. Perspect Plant Ecol Evol Syst 15:77–85. doi:10.1016/j.ppees.2012.12.003

    Article  Google Scholar 

  • McNaughton SJ, Osterehld M, Frank DA, Williams KJ (1989) Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341:142–144

    Article  CAS  PubMed  Google Scholar 

  • Mendelssohn I, Morris J (2000) Eco-physiological controls on the productivity of Spartina alterniflora Loisel. In: Weinstein MP, Kreeger DA (eds) Concepts and controversies in tidal marsh ecology. Kluwer, Dordrecht, pp 59–80

  • Morgan JA, LeCain DR, Pendall E, Blumenthal DM, Kimball BA, Carrillo Y, Williams DG, Heisler-White J, Dijkstra FA, West M (2011) C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature 476:202–205. doi:10.1038/nature10274

    Article  CAS  PubMed  Google Scholar 

  • Morris J, Sundberg K, Hopkinson C (2013) Salt marsh primary production and its responses to relative sea level and nutrients in estuaries at Plum Island, Massachusetts, and North Inlet, South Carolina, USA. Oceanography 26:78–84

    Article  Google Scholar 

  • Muldavin EH, Moore DI, Collins SL, Wetherill KR, Lightfoot DC (2008) Aboveground net primary production dynamics in a northern Chihuahuan Desert ecosystem. Oecologia 155:123–132. doi:10.1007/s00442-007-0880-2

    Article  PubMed  Google Scholar 

  • Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schäfer KV, McCarthy H, Hendrey G, McNulty SG, Katul GG (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–472. doi:10.1038/35078064

    Article  CAS  PubMed  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. doi:10.1038/nature01286

    Article  CAS  PubMed  Google Scholar 

  • Preisser EL, Bolnick DI, Benard MF (2005) Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology 86:501–509. doi:10.1890/04-0719

  • Reich PB (2009) Elevated CO2 reduces losses of plant diversity caused by nitrogen deposition. Science 326:1399–1402. doi:10.1126/science.1178820

    Article  CAS  PubMed  Google Scholar 

  • Reich PB, Hungate BA, Luo Y (2006) Carbon–nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annu Rev Ecol Evol Syst 37:611–636. doi:10.1146/annurev.ecolsys.37.091305.110039

  • Ricklefs R (2004) A comprehensive framework for global patterns in biodiversity. Ecol Lett 7:1–15. doi:10.1046/j.1461-0248.2003.00554.x

    Article  Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson A, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461:472–475. doi:10.1038/461472a

    Article  PubMed  Google Scholar 

  • Runkle JR (2013) Thirty-two years of change in an old-growth Ohio beech–maple forest. Ecology 94:1165–1175. doi:10.1890/11-2199.1

  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J, GCTE-News (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562. doi:10.1007/s004420000544

    Article  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. doi:10.1126/science.287.5459.1770

    Article  CAS  PubMed  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596. doi:10.1038/35098000

    Article  CAS  PubMed  Google Scholar 

  • Schröter D, Cramer W, Leemans R, Prentice IC, Araújo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, de la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpää S, Klein RJT, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabaté S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337. doi:10.1126/science.1115233

    Article  PubMed  Google Scholar 

  • Shaver GR, Canadell J, Chapin FS, Gurevitch J, Harte J, Henry G, Ineson P, Jonasson S, Melillo J, Pitelka L, Rustad L (2000) Global warming and terrestrial ecosystems: a conceptual framework for analysis. Bioscience 50:871–882. doi:10.1641/0006-3568(2000)050[0871:gwatea]2.0.co;2

    Article  Google Scholar 

  • Shaw MR, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB (2002) Grassland responses to global environmental changes suppressed by elevated CO2. Science 298:1987–1990. doi:10.1126/science.1075312

    Article  CAS  PubMed  Google Scholar 

  • Simmons BL, Wall DH, Adams BJ, Ayres E, Barrett JE, Virginia RA (2009) Long-term experimental warming reduces soil nematode populations in the McMurdo Dry Valleys, Antarctica. Soil Biol Biochem 41:2052–2060. doi:10.1016/j.soilbio.2009.07.009

    Article  CAS  Google Scholar 

  • Sistla S, Moore JC, Simpson RT, Gough L, Shaver GR, Schimel JP (2013) Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature. doi:10.1038/nature12129

    PubMed  Google Scholar 

  • Smith MD, Knapp AK, Collins SL (2009) A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90:3279–3289. doi:10.1890/08-1815.1

    Article  PubMed  Google Scholar 

  • Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–1879. doi:10.1126/science.1094678

    Article  CAS  PubMed  Google Scholar 

  • Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005) Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc Natl Acad Sci USA 102:4387–4392. doi:10.1073/pnas.0408648102

  • Sundareshwar PV, Morris JT, Koepfler EK, Fornwalt B (2003) Phosphorus limitation of coastal ecosystem processes. Science 299:563–565. doi:10.1126/science.1079100

    Article  CAS  PubMed  Google Scholar 

  • Tilman DG (1987) Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecol Monogr 57:189–214. doi:10.2307/2937080

    Article  Google Scholar 

  • Tilman D, Reich PB, Isbell F (2012) Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. Proc Natl Acad Sci 109:10394–10397. doi:10.1073/pnas.1208240109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499. doi:10.1126/science.277.5325.494

  • Vittoz P, Randin C, Dutoit A, Bonnet F, Hegg O (2009) Low impact of climate change on subalpine grasslands in the Swiss Northern Alps. Glob Chang Biol 15:209–220. doi:10.1111/j.1365-2486.2008.01707.x

    Article  Google Scholar 

  • Wang D, Heckathorn SA, Wang X, Philpott SM (2012) A meta-analysis of plant physiological and growth responses to temperature and elevated CO2. Oecologia 169:1–13. doi:10.1007/s00442-011-2172-0

    Article  PubMed  Google Scholar 

  • Worm B, Lotze HK, Hillebrand H, Sommer U (2002) Consumer versus resource control of species diversity and ecosystem functioning. Nature 417:848–851. doi:10.1038/nature00830

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Dijkstra P, Koch GW, Peuñelas J, Hungate BA (2011) Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob Chang Biol 17:927–942. doi:10.1111/j.1365-2486.2010.02302.x

    Article  Google Scholar 

  • Yarie J, Van Cleve K (1996) Effects of carbon, fertilizer, and drought on foliar chemistry of tree species in interior Alaska. Ecol Appl 6:815–827

Download references

Acknowledgments

This synthesis effort was a product of an LTER Working Group entitled “Long-term experiments in the LTER Network: synthesis and hypothesis testing.” We thank the participants of the working group for their contributions; S. McNulty, J. Boggs, P. Edwards, F. Wood, and R. Oren for providing data for this analysis; and the LTER Network Office for providing support. We thank four anonymous reviewers for providing comments on previous versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melinda D. Smith.

Additional information

Communicated by Russell K. Monson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, M.D., La Pierre, K.J., Collins, S.L. et al. Global environmental change and the nature of aboveground net primary productivity responses: insights from long-term experiments. Oecologia 177, 935–947 (2015). https://doi.org/10.1007/s00442-015-3230-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3230-9

Keywords

Navigation