Oecologia

, Volume 177, Issue 4, pp 935–947 | Cite as

Global environmental change and the nature of aboveground net primary productivity responses: insights from long-term experiments

  • Melinda D. Smith
  • Kimberly J. La Pierre
  • Scott L. Collins
  • Alan K. Knapp
  • Katherine L. Gross
  • John E. Barrett
  • Serita D. Frey
  • Laura Gough
  • Robert J. Miller
  • James T. Morris
  • Lindsey E. Rustad
  • John Yarie
Special Topic: Coordinated approaches to global change research

Abstract

Many global change drivers chronically alter resource availability in terrestrial ecosystems. Such resource alterations are known to affect aboveground net primary production (ANPP) in the short term; however, it is unknown if patterns of response change through time. We examined the magnitude, direction, and pattern of ANPP responses to a wide range of global change drivers by compiling 73 datasets from long-term (>5 years) experiments that varied by ecosystem type, length of manipulation, and the type of manipulation. Chronic resource alterations resulted in a significant change in ANPP irrespective of ecosystem type, the length of the experiment, and the resource manipulated. However, the pattern of ecosystem response over time varied with ecosystem type and manipulation length. Continuous directional responses were the most common pattern observed in herbaceous-dominated ecosystems. Continuous directional responses also were frequently observed in longer-term experiments (>11 years) and were, in some cases, accompanied by large shifts in community composition. In contrast, stepped responses were common in forests and other ecosystems (salt marshes and dry valleys) and with nutrient manipulations. Our results suggest that the response of ANPP to chronic resource manipulations can be quite variable; however, responses persist once they occur, as few transient responses were observed. Shifts in plant community composition over time could be important determinants of patterns of terrestrial ecosystem sensitivity, but comparative, long-term studies are required to understand how and why ecosystems differ in their sensitivity to chronic resource alterations.

Keywords

Aboveground productivity Hierarchical response framework (HRF) Long-Term Ecological Research (LTER) Network Nutrient addition Precipitation manipulation 

Supplementary material

442_2015_3230_MOESM1_ESM.docx (24 kb)
Supplementary material 1 (DOCX 24 kb)

References

  1. Aber JD, Magill AH (2004) Chronic nitrogen additions at the Harvard Forest (USA): the first 15 years of a nitrogen saturation experiment. For Ecol Manag 196:1–5. doi:10.1016/j.foreco.2004.03.009 CrossRefGoogle Scholar
  2. Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems. Bioscience 48:921–934. doi:10.2307/1313296 CrossRefGoogle Scholar
  3. Adams HD, Guardiola-Claramonte M, Barron-Gafford GA, Villegas JC, Breshears DD, Zou CB, Troch PA, Huxman TE (2009) Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proc Natl Acad Sci USA 106:7063–7066. doi:10.1073/pnas.0901438106
  4. Allan E, Weisser W, Weigelt A, Roscher C, Fischer M, Hillebrand H (2011) More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proc Natl Acad Sci USA 108:17034–17039. doi:10.1073/pnas.1104015108
  5. Avolio ML, Koerner SE, La Pierre KJ, Wilcox KR, Wilson GWT, Smith MD, Collins SL (2014) Changes in plant community composition, not diversity, during a decade of nitrogen and phosphorus additions drive above-ground productivity in tallgrass prairie. J Ecol 102:1649–1660CrossRefGoogle Scholar
  6. Báez S, Collins S, Lightfoot D, Koontz T (2006) Effects of rodent removal on community dynamics in desert grassland and shrubland vegetation. Ecology 87:2746–2754. doi:10.1007/s00442-012-2552-0 CrossRefPubMedGoogle Scholar
  7. Barnosky AD, Hadly EA, Bascompte J, Berlow EL, Brown JH, Fortelius M, Getz WM, Harte J, Hastings A, Marquet PA, Martinez ND, Mooers A, Roopnarine P, Vermeij G, Williams JW, Gillespie R, Kitzes J, Marshall C, Matzke N, Mindell DP, Revilla E, Smith AB (2012) Approaching a state shift in Earth’s biosphere. Nature 486:52–58. doi:10.1038/nature11018
  8. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle D, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Corrigendum: biodiversity loss and its impact on humanity. Nature 489:326. doi:10.1038/nature11373 CrossRefGoogle Scholar
  9. Carpenter SR (2001) Alternate states of ecosystems: evidence and some implications. In: Press MC, Huntly N, Levin S (eds) Ecology: achievement and challenge. Blackwell, London, pp 357–381Google Scholar
  10. Chave J, Condit R, Muller-Landau HC, Thomas SC, Ashton PS, Bunyavejchewin S, Co LL, Dattaraja HS, Davies SJ, Esufali S, Ewango CEN, Feeley KJ, Foster RB, Gunatilleke N, Gunatilleke S, Hall P, Hart TB, Hernández C, Hubbell SP, Itoh A, Kiratiprayoon S, LaFrankie JV, De Lao SL, Makana JR, Noor MNS, Kassim AR, Samper C, Sukumar R, Suresh HS, Tan S, Thompson J, Tongco MDC, Valencia R, Vallejo M, Villa G, Yamakura T, Zimmerman JK, Losos EC (2008) Assessing evidence for a pervasive alteration in tropical tree communities. PLoS Biol 6:0455–0462. doi:10.1371/journal.pbio.0060045 CrossRefGoogle Scholar
  11. Cherwin K, Knapp A (2012) Unexpected patterns of sensitivity to drought in three semi-arid grasslands. Oecologia 169:845–852. doi:10.1007/s00442-011-2235-2 CrossRefPubMedGoogle Scholar
  12. Clark CM, Tilman D (2008) Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451:712–715. doi:10.1038/nature06503 CrossRefPubMedGoogle Scholar
  13. Clark CM, Tilman D (2010) Recovery of plant diversity following N cessation: effects of recruitment, litter, and elevated N cycling. Ecology 91:3620–3630. doi:10.1890/09-1268.1 CrossRefPubMedGoogle Scholar
  14. Cleland EE, Allen JM, Crimmins TM, Dunne JA, Pau S, Travers SE, Zavaleta ES, Wolkovich EM (2012) Phenological tracking enables positive species responses to climate change. Ecology 93:1765–1771. doi:10.1890/11-1912.1 CrossRefPubMedGoogle Scholar
  15. Collins SL, Suding KN, Cleland EE, Batty M, Pennings SC, Gross KL, Grace JB, Gough L, Fargione JE, Clark CM (2008) Rank clocks and plant community dynamics. Ecology 89:3534–3541. doi:10.1890/07-1646.1 CrossRefPubMedGoogle Scholar
  16. Collins SL, Koerner SE, Plaut JA, Okie JG, Brese D, Calabrese LB, Carvajal A, Evansen RJ, Nonaka E (2012) Stability of tallgrass prairie during a 19-year increase in growing season precipitation. Funct Ecol 26:1450–1459. doi:10.1111/j.1365-2435.2012.01995.x CrossRefGoogle Scholar
  17. Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142. doi:10.1111/j.1461-0248.2007.01113.x CrossRefPubMedGoogle Scholar
  18. Fahey TJ, Knapp AK (2007) Principles and standards for measuring net primary production. Oxford University Press, OxfordGoogle Scholar
  19. Foley JA, Defries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574. doi:10.1126/science.1111772 CrossRefPubMedGoogle Scholar
  20. Foster BL, Gross KL (1998) Species richness in a successional grassland: effects of nitrogen enrichment and plant litter. Ecology 79:2593–2602. doi:10.1890/0012-9658(1998)079[2593:SRIASG]2.0.CO;2CrossRefGoogle Scholar
  21. Fridley JD (2002) Resource availability dominates and alters the relationship between species diversity and ecosystem productivity in experimental plant communities. Oecologia 132:271–277. doi:10.1007/s00442-002-0965-x CrossRefGoogle Scholar
  22. Gough L, Hobbie SE (2003) Responses of moist non-acidic arctic tundra to altered environment: productivity, biomass, and species richness. Oikos 103:204–216. doi:10.1034/j.1600-0706.2003.12363.x CrossRefGoogle Scholar
  23. Gross KL, Willig MR, Gough L, Inouye R, Cox SB (2000) Patterns of species density and productivity at different spatial scales in herbaceous plant communities. Oikos 89:417. doi:10.1034/j.1600-0706.2000.890301.x CrossRefGoogle Scholar
  24. Hallett LM, Hsu JS, Cleland EE, Collins SL, Dickson TL, Farrer EC, Gherardi LA, Gross KL, Hobbs RJ, Turnbull L, Suding KN (2014) Biotic mechanisms contributing to the stability of primary productivity alternate along a gradient of precipitation variability. Ecology 95:1693–1700CrossRefPubMedGoogle Scholar
  25. Halpern BS, Walbridge S, Selkoe Ka, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R, Heinemann D, Lenihan HS, Madin EMP, Perry MT, Selig ER, Spalding M, Steneck R, Watson R (2008) A global map of human impact on marine ecosystems. Science 319:948–952. doi:10.1126/science.1149345 CrossRefPubMedGoogle Scholar
  26. Hautier Y, Niklaus PA, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science 324:636–638. doi:10.1126/science.1169640 CrossRefPubMedGoogle Scholar
  27. Hedges LV, Olkin I (1985) Statistical methods for meta-analysis. Academic, New YorkGoogle Scholar
  28. Hobbie SE, Gough L, Shaver GR (2005) Species compositional differences on different-aged glacial landscapes drive contrasting responses of tundra to nutrient addition. J Ecol 93:770–782. doi:10.1111/j.1365-2745.2005.01006.x CrossRefGoogle Scholar
  29. Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor MI (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–109. doi:10.1038/nature11118 PubMedGoogle Scholar
  30. Hudson JMG, Henry GHR (2010) High Arctic plant community resists 15 years of experimental warming. J Ecol 98:1035–1041. doi:10.1111/j.1365-2745.2010.01690.x CrossRefGoogle Scholar
  31. Huxman TE, Smith MD, Fay PA, Knapp AK, Shaw MR, Loik ME, Smith SD, Tissue DT, Zak JC, Weltzin JF, Pockman WT, Sala OE, Haddad BM, Harte J, Koch GW, Schwinning S, Small EE, Williams DG (2004) Convergence across biomes to a common rain-use efficiency. Nature 429:651–654. doi:10.1038/nature02561 CrossRefPubMedGoogle Scholar
  32. IPCC (2013) Stoker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New YorkGoogle Scholar
  33. Isbell F, Reich PB, Tilman D, Hobbie SE, Polasky S, Binder S (2013) Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc Natl Acad Sci USA 110:11911–11916. doi:10.1073/pnas.1310880110
  34. Jentsch A, Kreyling J, Elmer M, Gellesch E, Glaser B, Grant K, Hein R, Lara M, Mirzae H, Nadler SE, Nagy L, Otieno D, Pritsch K, Rascher U, Schädler M, Schloter M, Singh BK, Stadler J, Walter J, Wellstein C, Wöllecke J, Beierkuhnlein C (2011) Climate extremes initiate ecosystem-regulating functions while maintaining productivity. J Ecol 99:689–702. doi:10.1111/j.1365-2745.2011.01817.x CrossRefGoogle Scholar
  35. Jin Y, Goulden ML (2013) Ecological consequences of variation in precipitation: separating short- versus long-term effects using satellite data. Glob Ecol Biogeogr. doi:10.1111/geb.12135 Google Scholar
  36. Jung V, Albert CH, Violle C, Kunstler G, Loucougaray G, Spiegelberger T (2014) Intraspecific trait variability mediates the response of subalpine grassland communities to extreme drought events. J Ecol 102:45–53. doi:10.1111/1365-2745.12177 CrossRefGoogle Scholar
  37. Kitchen DJ, Blair JM, Callaham MA (2009) Annual fire and mowing alter biomass, depth distribution, and C and N content of roots and soil in tallgrass prairie. Plant Soil 323:235–247. doi:10.1007/s11104-009-9931-2 CrossRefGoogle Scholar
  38. Knapp AK, Briggs JM, Smith MD (2012a) Annual fire and mowing alter biomass, depth distribution, and C and N content of roots and soil in tallgrass prairie. Funct Ecol 26:1231–1233CrossRefGoogle Scholar
  39. Knapp AK, Smith MD, Hobbie SE, Collins SL, Timothy J, Hansen GJA, Landis DA, La Pierre KJ, Melillo JM, Seastedt TR, Shaver GR, Webster JR (2012b) Past, present, and future roles of long-term experiments in the LTER network. Bioscience 62:377–389CrossRefGoogle Scholar
  40. Ladwig LM, Collins SL, Swann AL, Xia Y, Allen MF, Allen EB (2012) Above- and belowground responses to nitrogen addition in a Chihuahuan Desert grassland. Oecologia 169:177–185. doi:10.1007/s00442-011-2173-z CrossRefPubMedGoogle Scholar
  41. LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379. doi:10.1890/06-2057.1 CrossRefPubMedGoogle Scholar
  42. Leuzinger S, Luo Y, Beier C, Dieleman W, Vicca S, Körner C (2011) Do global change experiments overestimate impacts on terrestrial ecosystems? Trends Ecol Evol 26:236–241. doi:10.1016/j.tree.2011.02.011 CrossRefPubMedGoogle Scholar
  43. Lubchenco J (1998) Entering the century of the environment: a new social contract for science. Science 279:491–497. doi:10.1126/science.279.5350.491 CrossRefGoogle Scholar
  44. Luo Y, Wan S, Hui D, Wallace LL (2001) Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413:622–625. doi:10.1038/35098065 CrossRefPubMedGoogle Scholar
  45. Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731. doi:10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2CrossRefGoogle Scholar
  46. Mariotte P, Vandenberghe C, Meugnier C, Rossi P, Bardgett RD, Buttler A (2013) Subordinate plant species impact on soil microbial communities and ecosystem functioning in grasslands: findings from a removal experiment. Perspect Plant Ecol Evol Syst 15:77–85. doi:10.1016/j.ppees.2012.12.003 CrossRefGoogle Scholar
  47. McNaughton SJ, Osterehld M, Frank DA, Williams KJ (1989) Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341:142–144CrossRefPubMedGoogle Scholar
  48. Mendelssohn I, Morris J (2000) Eco-physiological controls on the productivity of Spartina alterniflora Loisel. In: Weinstein MP, Kreeger DA (eds) Concepts and controversies in tidal marsh ecology. Kluwer, Dordrecht, pp 59–80Google Scholar
  49. Morgan JA, LeCain DR, Pendall E, Blumenthal DM, Kimball BA, Carrillo Y, Williams DG, Heisler-White J, Dijkstra FA, West M (2011) C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature 476:202–205. doi:10.1038/nature10274 CrossRefPubMedGoogle Scholar
  50. Morris J, Sundberg K, Hopkinson C (2013) Salt marsh primary production and its responses to relative sea level and nutrients in estuaries at Plum Island, Massachusetts, and North Inlet, South Carolina, USA. Oceanography 26:78–84CrossRefGoogle Scholar
  51. Muldavin EH, Moore DI, Collins SL, Wetherill KR, Lightfoot DC (2008) Aboveground net primary production dynamics in a northern Chihuahuan Desert ecosystem. Oecologia 155:123–132. doi:10.1007/s00442-007-0880-2 CrossRefPubMedGoogle Scholar
  52. Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schäfer KV, McCarthy H, Hendrey G, McNulty SG, Katul GG (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–472. doi:10.1038/35078064 CrossRefPubMedGoogle Scholar
  53. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. doi:10.1038/nature01286 CrossRefPubMedGoogle Scholar
  54. Preisser EL, Bolnick DI, Benard MF (2005) Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology 86:501–509. doi:10.1890/04-0719
  55. Reich PB (2009) Elevated CO2 reduces losses of plant diversity caused by nitrogen deposition. Science 326:1399–1402. doi:10.1126/science.1178820 CrossRefPubMedGoogle Scholar
  56. Reich PB, Hungate BA, Luo Y (2006) Carbon–nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annu Rev Ecol Evol Syst 37:611–636. doi:10.1146/annurev.ecolsys.37.091305.110039Google Scholar
  57. Ricklefs R (2004) A comprehensive framework for global patterns in biodiversity. Ecol Lett 7:1–15. doi:10.1046/j.1461-0248.2003.00554.x CrossRefGoogle Scholar
  58. Rockström J, Steffen W, Noone K, Persson A, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461:472–475. doi:10.1038/461472a CrossRefPubMedGoogle Scholar
  59. Runkle JR (2013) Thirty-two years of change in an old-growth Ohio beech–maple forest. Ecology 94:1165–1175. doi:10.1890/11-2199.1
  60. Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J, GCTE-News (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562. doi:10.1007/s004420000544 CrossRefGoogle Scholar
  61. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. doi:10.1126/science.287.5459.1770 CrossRefPubMedGoogle Scholar
  62. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596. doi:10.1038/35098000 CrossRefPubMedGoogle Scholar
  63. Schröter D, Cramer W, Leemans R, Prentice IC, Araújo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, de la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpää S, Klein RJT, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabaté S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337. doi:10.1126/science.1115233 CrossRefPubMedGoogle Scholar
  64. Shaver GR, Canadell J, Chapin FS, Gurevitch J, Harte J, Henry G, Ineson P, Jonasson S, Melillo J, Pitelka L, Rustad L (2000) Global warming and terrestrial ecosystems: a conceptual framework for analysis. Bioscience 50:871–882. doi:10.1641/0006-3568(2000)050[0871:gwatea]2.0.co;2CrossRefGoogle Scholar
  65. Shaw MR, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB (2002) Grassland responses to global environmental changes suppressed by elevated CO2. Science 298:1987–1990. doi:10.1126/science.1075312 CrossRefPubMedGoogle Scholar
  66. Simmons BL, Wall DH, Adams BJ, Ayres E, Barrett JE, Virginia RA (2009) Long-term experimental warming reduces soil nematode populations in the McMurdo Dry Valleys, Antarctica. Soil Biol Biochem 41:2052–2060. doi:10.1016/j.soilbio.2009.07.009 CrossRefGoogle Scholar
  67. Sistla S, Moore JC, Simpson RT, Gough L, Shaver GR, Schimel JP (2013) Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature. doi:10.1038/nature12129 PubMedGoogle Scholar
  68. Smith MD, Knapp AK, Collins SL (2009) A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90:3279–3289. doi:10.1890/08-1815.1 CrossRefPubMedGoogle Scholar
  69. Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–1879. doi:10.1126/science.1094678 CrossRefPubMedGoogle Scholar
  70. Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005) Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc Natl Acad Sci USA 102:4387–4392. doi:10.1073/pnas.0408648102
  71. Sundareshwar PV, Morris JT, Koepfler EK, Fornwalt B (2003) Phosphorus limitation of coastal ecosystem processes. Science 299:563–565. doi:10.1126/science.1079100 CrossRefPubMedGoogle Scholar
  72. Tilman DG (1987) Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecol Monogr 57:189–214. doi:10.2307/2937080 CrossRefGoogle Scholar
  73. Tilman D, Reich PB, Isbell F (2012) Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. Proc Natl Acad Sci 109:10394–10397. doi:10.1073/pnas.1208240109 CrossRefPubMedCentralPubMedGoogle Scholar
  74. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499. doi:10.1126/science.277.5325.494
  75. Vittoz P, Randin C, Dutoit A, Bonnet F, Hegg O (2009) Low impact of climate change on subalpine grasslands in the Swiss Northern Alps. Glob Chang Biol 15:209–220. doi:10.1111/j.1365-2486.2008.01707.x CrossRefGoogle Scholar
  76. Wang D, Heckathorn SA, Wang X, Philpott SM (2012) A meta-analysis of plant physiological and growth responses to temperature and elevated CO2. Oecologia 169:1–13. doi:10.1007/s00442-011-2172-0 CrossRefPubMedGoogle Scholar
  77. Worm B, Lotze HK, Hillebrand H, Sommer U (2002) Consumer versus resource control of species diversity and ecosystem functioning. Nature 417:848–851. doi:10.1038/nature00830 CrossRefPubMedGoogle Scholar
  78. Wu Z, Dijkstra P, Koch GW, Peuñelas J, Hungate BA (2011) Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob Chang Biol 17:927–942. doi:10.1111/j.1365-2486.2010.02302.x CrossRefGoogle Scholar
  79. Yarie J, Van Cleve K (1996) Effects of carbon, fertilizer, and drought on foliar chemistry of tree species in interior Alaska. Ecol Appl 6:815–827Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Melinda D. Smith
    • 1
  • Kimberly J. La Pierre
    • 2
  • Scott L. Collins
    • 3
  • Alan K. Knapp
    • 1
  • Katherine L. Gross
    • 4
  • John E. Barrett
    • 5
  • Serita D. Frey
    • 6
  • Laura Gough
    • 7
  • Robert J. Miller
    • 8
  • James T. Morris
    • 9
  • Lindsey E. Rustad
    • 10
  • John Yarie
    • 11
  1. 1.Department of Biology and Graduate Degree Program in EcologyColorado State UniversityFort CollinsUSA
  2. 2.Department of Integrative BiologyUniversity of California BerkeleyBerkeleyUSA
  3. 3.Department of BiologyUniversity of New MexicoAlbuquerqueUSA
  4. 4.W. K. Kellogg Biological Station and Department of Plant BiologyMichigan State UniversityHickory CornersUSA
  5. 5.Department of Biological SciencesVirginia TechBlacksburgUSA
  6. 6.Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamUSA
  7. 7.Department of BiologyUniversity of Texas at ArlingtonArlingtonUSA
  8. 8.Marine Science InstituteUniversity of California Santa BarbaraSanta BarbaraUSA
  9. 9.Belle W. Baruch Institute for Marine and Coastal SciencesUniversity of South CarolinaColumbiaUSA
  10. 10.United States Department of Agriculture, Forest ServiceDurhamUSA
  11. 11.Department of Natural Resources ManagementUniversity of Alaska FairbanksFairbanksUSA

Personalised recommendations