Advertisement

Oecologia

, Volume 178, Issue 2, pp 603–614 | Cite as

Changes in carbon sources fueling benthic secondary production over depth and time: coupling Chironomidae stable carbon isotopes to larval abundance

  • Victor FrossardEmail author
  • Valérie Verneaux
  • Laurent Millet
  • Michel Magny
  • Marie-Elodie Perga
Global change ecology - Original research

Abstract

Stable C isotope ratio (δ13C) values of chironomid remains (head capsules; HC) were used to infer changes in benthic C sources over the last 150 years for two French sub-Alpine lakes. The HCs were retrieved from a series of sediment cores from different depths. The HC δ13C values started to decrease with the onset of eutrophication. The HC δ13C temporal patterns varied among depths, which revealed spatial differences in the contribution of methanotrophic bacteria to the benthic secondary production. The estimates of the methane (CH4)-derived C contribution to chironomid biomass ranged from a few percent prior to the 1930s to up to 30 % in recent times. The chironomid fluxes increased concomitantly with changes in HC δ13C values before a drastic decrease due to the development of hypoxic conditions. The hypoxia reinforced the implication for CH4-derived C transfer to chironomid production. In Lake Annecy, the HC δ13C values were negatively correlated to total organic C (TOC) content in the sediment (Corg), whereas no relationship was found in Lake Bourget. In Lake Bourget, chironomid abundances reached their maximum with TOC contents between 1 and 1.5 % Corg, which could constitute a threshold for change in chironomid abundance and consequently for the integration of CH4-derived C into the lake food webs. Our results indicated that the CH4-derived C contribution to the benthic food webs occurred at different depths in these two large, deep lakes (deep waters and sublittoral zone), and that the trophic transfer of this C was promoted in sublittoral zones where O2 gradients were dynamic.

Keywords

Lakes Chironomids Methanotrophy 

Notes

Acknowledgments

We are indebted to two anonymous reviewers and the editor for comments that greatly improved the manuscript, as well as to Clémentine Fritsch (UMR-CNRS 6249, Besançon) for her advice on statistical analyses. This study is a contribution to the program Impact des Perturbations sur les Réseaux Trophiques en lacs (IPER-RETRO) and was financially supported by the French National Research Agency (ANR VUL 005).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

442_2015_3225_MOESM1_ESM.txt (10 kb)
Supplementary material 1 (TXT 9 kb)
442_2015_3225_MOESM2_ESM.xlsx (30 kb)
Supplementary material 2 (XLSX 29 kb)

References

  1. Agasild H, Zingel P, Tuvikene L, Tuvikene A, Timm H, Feldmann T, Salujõe J, Toming K, Jones RI, Nõges T (2014) Biogenic CH4 contributes to the food web of a large, shallow lake. Freshwater Biol 59:272–285CrossRefGoogle Scholar
  2. Armitage P, Cranston PS, Pinder LCV (1994) The Chironomidae: biology and ecology of non-biting midges. Chapman and Hall, LondonGoogle Scholar
  3. Bastviken D, Cole JJ, Pace ML, Van de Bogert MC (2008) Fates of CH4 from different lake habitats: connecting whole-lake budgets and CH4 emissions. J Geophys Res Biogeosci 113:13CrossRefGoogle Scholar
  4. Belle S, Parent C, Frossard V, Verneaux V, Millet L, Chronopoulou P-M, Sabatier P, Magny M (2014) Temporal changes in the contribution of CH4-oxidizing bacteria to the biomass of chironomid larvae determined using stable carbon isotopes and ancient DNA. J Paleolimnol. doi: 10.1007/s10933-10014-19789-z Google Scholar
  5. Berthon V, Alric B, Rimet F, Perga ME (2014) Sensitivity and responses of diatoms to climate warming in lakes heavily influenced by humans. Freshwater Biol. doi: 10.1111/fwb.12380 Google Scholar
  6. Blees J, Niemann H, Wenk C, Zopfi J, Schubert C, Kirf M, Veronesi M, Hitz C, Lehmann M (2014) Micro-aerobic bacterial CH4 oxidation in the chemocline and anoxic water column of deep south-Alpine Lake Lugano (Switzerland). Limnol Oceanogr 59:311–324CrossRefGoogle Scholar
  7. Borrel G, Jézéquel D, Biderre-Petit C, Morel-Desrosiers N, Morel JP, Peyret P, Fonty G, Lehours AC (2011) Production and consumption of CH4 in freshwater lake ecosystems. Res Microbiol 162:832–847CrossRefPubMedGoogle Scholar
  8. Brodersen K, Pedersen O, Walker I, Jensen M (2008) Respiration of midges (Diptera; Chironomidae) in British Columbian lakes: oxy-regulation, temperature and their role as palaeo-indicators. Freshwater Biol 53:593–602CrossRefGoogle Scholar
  9. Brooks JL, Dodson SI (1965) Predation, body size, and composition of plankton. Science 150:28–35CrossRefPubMedGoogle Scholar
  10. Brooks SJ, Langdon PG, Heiri O (2007) The identification and use of Palaearctic Chironomidae larvae in palaeoecology. QRA technical guide no. 10 Quaternary Research Association, LondonGoogle Scholar
  11. Carpenter SR, Ludwig D, Brock W (1999) Management of eutrophicaiton for lakes subject to potentially irreversible change. Ecol Appl 9:751–771CrossRefGoogle Scholar
  12. Cole J, Carpenter S, Kitchell J, Pace M, Solomon C, Weidel B (2011) Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen. PNAS 108:1975–1980CrossRefPubMedCentralPubMedGoogle Scholar
  13. Danis PA, von Grafenstein U, Masson-Delmotte V, Planton V, Gerdeaux D, Moisselin JM (2004) Vulnerability of two European lakes in response to future climatic changes. Geophys Res Lett 31:L21507CrossRefGoogle Scholar
  14. Deines P, Wooller MJ, Grey J (2009) Unravelling complexities in benthic food webs using a dual stable isotope (hydrogen and carbon) approach. Freshwater Biol 54:2243–2251CrossRefGoogle Scholar
  15. Devlin SP, Vander Zanden MJ, Vadeboncoeur Y (2013) Depth-specific variation in carbon isotopes demonstrates resource partitioning among the littoral zoobenthos. Freshwater Biol 58:2389–2400Google Scholar
  16. Eller G, Känel L, Krüger M (2005) Cooccurrence of aerobic and anaerobic CH4 oxidation in the water column of lake Plußsee. Appl Environ Microbiol 71:8925–8928CrossRefPubMedCentralPubMedGoogle Scholar
  17. Eller G, Deines P, Krüger M (2007) Possible sources of CH4-derived carbon for chironomid larvae. Aquat Microb Ecol 46:283–293CrossRefGoogle Scholar
  18. Espitalié J, Deroo G, Marquis F (1985a) La pyrolyse rock Eval et ses applications 2de partie. Rev Inst Fr Pet 40:755–784Google Scholar
  19. Espitalié J, Deroo G, Marquis F (1985b) La pyrolyse rock Eval et ses applications. 3ème partie. Rev Inst Fr Pet 41:73–89Google Scholar
  20. France RL (1995) Carbon-13 depletion in benthic compared to planktonic algae: foodweb implications. Mar Ecol Prog Ser 124:307–312CrossRefGoogle Scholar
  21. Frossard V (2013c) Trajectoires écologiques des lacs d’Annecy et du Bourget au cours des 150 dernières années: approche paléolimnologique par analyse des assemblages de Chironomidae (Diptera) et de leurs signatures isotopiques en carbone. Ph.D. thesis, Université Franche-Comté, FranceGoogle Scholar
  22. Frossard V, Belle S, Verneaux V, Millet L, Magny M (2013a) A study of the δ13C offset between chironomid larvae and their exuvial head capsules: a contribution to palaeoecology. J Paleolimnol 50:379–386CrossRefGoogle Scholar
  23. Frossard V, Millet L, Verneaux V, Jenny JP, Arnaud F, Magny M, Poulenard J, Perga ME (2013b) Chironomid assemblage reconstructions at multiple depths describe the O2-driven changes in a deep French lake during the last 150 years. J Paleolimnol 50:257–273CrossRefGoogle Scholar
  24. Frossard V, Verneaux V, Millet L, Jenny JP, Arnaud F, Magny M, Perga ME (2014a) Depth-specific responses of the chironomid community to contrasting anthropogenic pressures: a paleolimnological perspective of 150 years. Freshwater Biol 59:26–40CrossRefGoogle Scholar
  25. Frossard V, Verneaux V, Millet L, Jenny JP, Arnaud F, Magny M, Perga ME (2014b) Reconstructing long-term changes (150 years) in the carbon cycle of a clear-water lake based on the stable carbon isotope composition (d13C) of chironomid and cladoceran subfossil remains. Freshwater Biol. doi: 10.1111/fwb.12304 Google Scholar
  26. Grey J, Deines P (2005) Differential assimilation of methanotrophic and chemoautotrophic bacteria by lake chironomid larvae. Aquat Microb Ecol 40:61–66CrossRefGoogle Scholar
  27. Hanson R, Hanson T (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471PubMedCentralPubMedGoogle Scholar
  28. Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall, LondonGoogle Scholar
  29. Heiri O, Schilder J, van Hardenbroek M (2012) Stable isotopic analysis of fossil chironomids as an approach to environmental reconstruction: state of development and future challenges. Fauna Nor 31:7–18Google Scholar
  30. Jenny JP, Arnaud F, Dorioz JM, Giguet Covex C, Frossard V, Sabatier P, Millet L, Reyss JL, Tachikawa K, Bard E, Pignol C, Soufi F, Romeyer O, Perga ME (2013) A spatiotemporal sediment investigation highlights the dynamics of hypolimnetic hypoxia in a large hard water lake over 150 years. Limnol Oceanogr 58:1395–1408Google Scholar
  31. Jones R, Grey J (2011) Biogenic CH4 in freshwater food webs. Freshwater Biol 56:213–229CrossRefGoogle Scholar
  32. Jones SE, Lennon JT (2009) Evidence for limited microbial transfer of CH4 in a planktonic food web. Aquat Microb Ecol 58:45–53CrossRefGoogle Scholar
  33. Jones RI, Carter CE, Kelly A, Ward S, Kelly DJ, Grey J (2008) Widespread contribution of CH4cycle bacteria to the diets of lake profundal chironomid larvae. Ecology 89:857–864CrossRefPubMedGoogle Scholar
  34. Jyväsjärvi J, Boros G, Jones R, Hämäläinen H (2013) The importance of sedimenting organic matter, relative to O2 and temperature, in structuring lake profundal macroinvertebrate assemblages. Hydrobiologia 709:55–72CrossRefGoogle Scholar
  35. Kankaala P, Taipale S, Grey J, Sonninen E, Arvola L, Jones R (2006) Experimental d13C evidence for a contribution of CH4 to pelagic food webs in lakes. Limnol Oceanogr 51:2821–2827CrossRefGoogle Scholar
  36. Karlsson J (2007) Different carbon support for respiration and secondary production in unproductive lakes. Oikos 116:1691–1696CrossRefGoogle Scholar
  37. Kiyashko S, Narita T, Wada E (2001) NOTE: contribution of methanotrophs to freshwater macroinvertebrates: evidence from stable isotope ratios. Aquat Microb Ecol 24:203–207CrossRefGoogle Scholar
  38. Lehmann M, Bernasconi S, Barbieri A, Simona M, McKenzie J (2004) Interannual variation of the isotopic composition of sedimenting organic carbon and nitrogen in Lake Lugano: a long-term sediment trap study. Limnol Oceanogr 49:839–849CrossRefGoogle Scholar
  39. Low-Décarie E, Fussmann GF, Bell G (2014) Aquatic primary production in a high-CO2 world. Trends Ecol Evol (Personal Edn) 29:223–232CrossRefGoogle Scholar
  40. Meyers P, Ishiwatari R (1993) Lacustrine organic geochemistry: an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20:867–900CrossRefGoogle Scholar
  41. Millet L, Giguet-Covex C, Verneaux V, Druart JC, Adatte T, Arnaud F (2010) Reconstruction of the recent history of a large deep prealpine lake (Lake Bourget, France) using subfossil chironomids, diatoms, and organic matter analysis: towards the definition of a lake-specific reference state. J Paleolimnol 44:963–978CrossRefGoogle Scholar
  42. Moller Pillot HKM (2009) Chironomidae larvae volume 2. Biology and ecology of the Chironomini. KNNVGoogle Scholar
  43. Moog O (2002) Fauna Aquatica Austriaca: a comprehensive species inventory of Austrian aquatic organisms with ecological notes, 2nd edn. Federal Ministry of Agriculture, Forestry, Environment and Water Management, Division VII (Water), ViennaGoogle Scholar
  44. Noël H, Garbolino E, Brauer A, Lallier-Vergès E, de Beaulieu JL, Disnar JR (2001) Human impact and soil erosion during the last 5,000 years as recorded in lacustrine sedimentary organic matter at Lac d’Annecy, the French Alps. J Paleolimnol 25:229–244CrossRefGoogle Scholar
  45. Paerl HW, Huisman J (2008) Blooms like it hot. Science 320:57–58CrossRefPubMedGoogle Scholar
  46. Perga ME, Gerdeaux D (2004) Changes in the δ13C of pelagic food webs: the influence of lake area and trophic status on the isotopic signature of whitefish (Coregonus lavaretus). Can J Fish Aquat Sc 61:1485–1492CrossRefGoogle Scholar
  47. Perga ME, Desmet M, Enters D, Reyss JL (2010) A century of bottom-up- and top-down-driven changes on a lake planktonic food web: a paleoecological and paleoisotopic study of Lake Annecy, France. Limnol Oceanogr 55:803–816CrossRefGoogle Scholar
  48. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Development Core Team (2012) nlme: linear and nonlinear mixed effects models. R package version 3.1-103Google Scholar
  49. Popp BN, Laws EA, Bidigare RR, Dore JE, Hanson KL, Wakeham SG (1998) Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim Cosmochim Acta 62:69–77CrossRefGoogle Scholar
  50. Quinlan R, Smol JP (2001) Chironomid-based inference models for estimating end-of-summer hypolimnetic O2 from south-central Ontario shield lakes. Freshwater Biol 46:1529–1551CrossRefGoogle Scholar
  51. Rau G (1978) Carbon-13 depletion in a subalpine lake: carbon flow implications. Science 201:901–902CrossRefPubMedGoogle Scholar
  52. Raven JA, Johnston AM, Newman JR, Scrimgeour CM (1994) Inorganic carbon acquisition by aquatic photolithoatrophs of the Dighty Burn, Angus, UK: uses and limitations of natural abundance measurements of carbon isotopes. New Phytol 127:271–286CrossRefGoogle Scholar
  53. Ravinet M, Syväranta J, Jones R, Grey J (2010) A trophic pathway from biogenic CH4 supports fish biomass in a temperate lake ecosystem. Oikos 119:409–416CrossRefGoogle Scholar
  54. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0, http://www.R-project.org/
  55. Reuss N, Hamerlik L, Velle G, Michelsen A, Pedersen O, Brodersen K (2013) Stable isotopes reveal that chironomids occupy several trophic levels within West Greenland lakes: implications for food web studies. Limnol Oceanogr 58:1023–1034CrossRefGoogle Scholar
  56. Reynolds CS (2008) A changing paradigm of pelagic food webs. Int Rev Hydrobiol 93:517–531CrossRefGoogle Scholar
  57. Rooney N, McCann K (2012) Integrating food web diversity, structure and stability. Trends Ecol Evol 27:40–46CrossRefPubMedGoogle Scholar
  58. Schippers P, Lürling M, Scheffer M (2004) Increase of atmospheric CO2 promotes phytoplankton productivity. Ecol Lett 7:446–451CrossRefGoogle Scholar
  59. Smyntek P, Maberly S, Grey J (2012) Dissolved carbon dioxide concentration controls baseline stable carbon isotope signatures of a lake food web. Limnol Oceanogr 57:1292–1302CrossRefGoogle Scholar
  60. Solomon C, Carpenter S, Clayton M, Cole J, Coloso J, Pace M, Vander Zanden J, Weidel B (2011) Terrestrial, benthic, and pelagic resource use in lakes: results from a three-isotope Bayesian mixing model. Ecology 92:1115–1125CrossRefPubMedGoogle Scholar
  61. Squires MM, Lesack LFW (2003) The relation between sediment nutrient content and macrophyte biomass and community structure along a water transparency gradient among lakes of the Mackenzie Delta Can. J Fish Aquat Sci 60:333–343CrossRefGoogle Scholar
  62. Summons RE (1994) Carbon isotopic fractionation in lipids from methanotrophic bacteria: relevance for interpretation of the geochemical record of biomarkers. Geochim Cosmochim Acta 58:2853–2863CrossRefPubMedGoogle Scholar
  63. Takagi S, Kikuchi E, Doi H, Shikano S (2005) Swimming behaviour of Chironomus acerbiphilus larvae in Lake Katanuma. Hydrobiologia 548:153–165CrossRefGoogle Scholar
  64. Talbot M, Livingstone D (1989) Hydrogen index and carbon isotopes of lacustrine organic matter as lake level indicators. Palaeogeogr Palaeoclim Palaeoecol 70:121–137CrossRefGoogle Scholar
  65. Vadeboncoeur Y, Vander Zanden J, Lodge D (2002) Putting the lake back together: reintegrating benthic pathways into Lake food web models. Bioscience 52:44CrossRefGoogle Scholar
  66. van Hardenbroek M, Heiri O, Grey J, Bodelier P, Verbruggen F, Lotter A (2010) Fossil chironomid δ13C as a proxy for past methanogenic contribution to benthic food webs in lakes? J Paleolimnol 43:235–245CrossRefGoogle Scholar
  67. van Hardenbroek M, Heiri O, Wilhelm M, Lotter A (2011) How representative are subfossil assemblages of Chironomidae and common benthic invertebrates for the living fauna of Lake De Waay, the Netherlands? Aquatic Science 73:247–259CrossRefGoogle Scholar
  68. van Hardenbroek M et al (2013) Evidence for past variations in CH4 availability in a Siberian thermokarst lake based on d13C of chitinous invertebrate remains. Quat Sci Rev 66:74–84CrossRefGoogle Scholar
  69. van Hardenbroek M, Lotter AF, Bastviken D, Andersen TJ, Heiri O (2014) Taxon-specific δ13C analysis of chitinous invertebrate remains in sediments from Strandsjön, Sweden. J Paleolimnol 52:95–105CrossRefGoogle Scholar
  70. Verneaux V, Verneaux J, Schmitt A, Lambert JC (2004) Relationship of macrobenthos with dissolved O2 and organic matter at the sediment-water interface in ten French lakes. Fundam Appl Limnol/Archiv Hydrobiol 160:247–259Google Scholar
  71. Wagner A, Volkmann S, Dettinger-Klemm PMA (2012) Benthic–pelagic coupling in lake ecosystems: the key role of chironomid pupae as prey of pelagic fish. Ecosphere 3:2–17CrossRefGoogle Scholar
  72. Wanninkhof R (1992) Relationship between wind-speed and gas exchange over the ocean. J Geophys Res Oceans 97:7373–7382CrossRefGoogle Scholar
  73. Wood SN (2006) Generalized additive models: an introduction with R. Chapman & Hall, LondonGoogle Scholar
  74. Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc B 73:3–36CrossRefGoogle Scholar
  75. Wooller M et al (2012) Reconstruction of past CH4 availability in an Arctic Alaska wetland indicates climate influenced CH4 release during the past ~12,000 years. J Paleolimnol 48:27–42CrossRefGoogle Scholar
  76. Yang C, Wilkinson G, Cole J, Macko S, Pace M (2014) Assigning hydrogen, carbon, and nitrogen isotope values for phytoplankton and terrestrial detritus in aquatic food web studies. Inland Waters 4:233–242CrossRefGoogle Scholar
  77. Zuür A, Ieno EN, Smith GM (2007) Analysing ecological data. Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Victor Frossard
    • 1
    • 2
    Email author
  • Valérie Verneaux
    • 2
  • Laurent Millet
    • 2
  • Michel Magny
    • 2
  • Marie-Elodie Perga
    • 3
  1. 1.Université Savoie Mont Blanc, UMR42 CARRTELLe-Bourget-du-lacFrance
  2. 2.Laboratoire Chrono-EnvironnementUMR6249Besançon CedexFrance
  3. 3.INRAUMR42 CARRTELThonon les Bains CedexFrance

Personalised recommendations