, Volume 178, Issue 2, pp 485–496 | Cite as

Warming-induced changes in predation, extinction and invasion in an ectotherm food web

  • Linda I. Seifert
  • Guntram Weithoff
  • Ursula Gaedke
  • Matthijs Vos
Community ecology – original research


Climate change will alter the forces of predation and competition in temperate ectotherm food webs. This may increase local extinction rates, change the fate of invasions and impede species reintroductions into communities. Invasion success could be modulated by traits (e.g., defenses) and adaptations to climate. We studied how different temperatures affect the time until extinction of species, using bitrophic and tritrophic planktonic food webs to evaluate the relative importance of predatory overexploitation and competitive exclusion, at 15 and 25 °C. In addition, we tested how inclusion of a subtropical as opposed to a temperate strain in this model food web affects times until extinction. Further, we studied the invasion success of the temperate rotifer Brachionus calyciflorus into the planktonic food web at 15 and 25 °C on five consecutive introduction dates, during which the relative forces of predation and competition differed. A higher temperature dramatically shortened times until extinction of all herbivore species due to carnivorous overexploitation in tritrophic systems. Surprisingly, warming did not increase rates of competitive exclusion among the tested herbivore species in bitrophic communities. Including a subtropical herbivore strain reduced top-down control by the carnivore at high temperature. Invasion attempts of temperate B. calyciflorus into the food web always succeeded at 15 °C, but consistently failed at 25 °C due to voracious overexploitation by the carnivore. Pre-induction of defenses (spines) in B. calyciflorus before the invasion attempt did not change its invasion success at the high temperature. We conclude that high temperatures may promote local extinctions in temperate ectotherms and reduce their chances of successful recovery.


Community dynamics Freshwater ecosystem Global warming Species range shift Trophic interactions 



We thank Sabine Donath for help with the counting. We are grateful to the editor and reviewers for their comments that considerably improved the manuscript. This work was funded through Deutsche Forschungsgemeinschaft grant VO 1669/1-1 to M. V.

Supplementary material

442_2014_3211_MOESM1_ESM.pdf (352 kb)
Supplementary material 1 (PDF 351 kb)


  1. Abrams PA, Vos M (2003) Adaptation, density dependence and the responses of trophic level abundances to mortality. Evol Ecol Res 5:1113–1132Google Scholar
  2. Araujo MB, Ferri-Yanez F, Bozinovic F, Marquet PA, Valladares F, Chown SL (2013) Heat freezes niche evolution. Ecol Lett 16:1206–1219CrossRefPubMedGoogle Scholar
  3. Barton BT, Beckerman AP, Schmitz OJ (2009) Climate warming strengthens indirect interactions in an old-field food web. Ecology 90:2346–2351CrossRefPubMedGoogle Scholar
  4. Beisner BE, McCauley E, Wrona FJ (1996) Temperature-mediated dynamics of planktonic food chains: the effect of an invertebrate carnivore. Freshwater Biol 35:219–232CrossRefGoogle Scholar
  5. Beisner BE, McCauley E, Wrona FJ (1997a) The influence of temperature and food chain length on plankton predator-prey dynamics. Can J Fish Aquat Sci 54:586–595Google Scholar
  6. Beisner BE, McCauley E, Wrona FJ (1997b) Predator-prey instability: individual-based mechanisms for population-level results. Funct Ecol 11:112–120CrossRefGoogle Scholar
  7. Binzer A, Guill C, Brose U, Rall BC (2012) The dynamics of food chains under climate change and nutrient enrichment. Phil Trans R Soc B 1605:2935–2944CrossRefGoogle Scholar
  8. Burgmer T, Hillebrand H, Pfenninger M (2007) Effects of climate-driven temperature changes on the diversity of freshwater macro invertebrates. Oecologia 151:93–100CrossRefPubMedGoogle Scholar
  9. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, et al. (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci 105:6668–6672CrossRefPubMedCentralPubMedGoogle Scholar
  10. Edwards M, Richardson AJ (2004) The impact of climate change on the phenology of the plankton community and trophic mismatch. Nature 430:881–884CrossRefPubMedGoogle Scholar
  11. Ewald NC, Hartley SE, Stewart AJA (2013) Climate change and trophic interactions in model temporary pond systems: the effect of high temperature on predation rate depend on prey size and density. Freshwater Biol 58:2481–2493CrossRefGoogle Scholar
  12. Gaedke U, Ruhenstroth-Bauer M, Wiegand I, Tirok K, Aberle N, Breitenhaupt P, Lengfellner K, Wohlers J, Sommer U, et al. (2010) Biotic interactions may overrule direct climate effects on spring phytoplankton dynamics. Glob Change Biol 16:1122–1136CrossRefGoogle Scholar
  13. Gilbert JJ (1967) Asplanchna and posterolateral spine induction in Brachionus calyciflorus. Hydrobiologia 64:1–62Google Scholar
  14. Guillard RRL, Lorenzen CJ (1972) Yellow-green algae with chlorophyllide c. J Phycol 8:10–14Google Scholar
  15. Halbach U (1970) Einfluß der temperatur auf die Populations Dynamik des planktischen Rädertieres Brachionus calyciflorus. Oecologia 4:176–207CrossRefGoogle Scholar
  16. Hansen J, Sato M, Ruedy R (2012) Perception of climate change. Proc Natl Acad Sci 109:14726–14727Google Scholar
  17. Hoekman D (2010) Turning up the heat: temperature influences the relative importance of top-down and bottom-up effects. Ecology 91:2819–2825CrossRefPubMedGoogle Scholar
  18. Holzapfel AM, Vinebrooke RD (2005) Environmental warming increases invasion potential of alpine lake communities by imported species. Glob Change Biol 11:2009–2015Google Scholar
  19. Jankowski T, Livingstone DM (2006) Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: implications for a warmer world. Limnol Oceanogr 51:815–819CrossRefGoogle Scholar
  20. Jeppesen E, Meerhoff M, Jacobsen BA, Hansen RS, Søndergaard M, et al. (2007) Restoration of shallow lakes by nutrient control and biomanipulation—the successful strategy varies with lake size and climate. Hydrobiolobia 581:269–285CrossRefGoogle Scholar
  21. Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Globak change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363CrossRefPubMedGoogle Scholar
  22. Kirk KL (1998) Enrichment can stabilize population dynamics: autotoxins and density dependence. Ecology 79:2456–2462CrossRefGoogle Scholar
  23. Kishi D, Murakami M, Nakano S, Maekawa K (2005) Water temperature determines strength of top-down control in a stream food web. Freshwater Biol 50:1315–1322CrossRefGoogle Scholar
  24. Kratina P, Greig HG, Thompson PL, Carvalho-Pereira TSA, Shurin JB (2012) Warming modifies trophic cascades and eutrophication in experimental freshwater communities. Ecology 93:1421–1430CrossRefPubMedGoogle Scholar
  25. Krenek S, Petzoldt T, Berendonk TU (2012) Coping with temperature at the warm edge—patterns of thermal adaption in the microbial eukaryote Paramecium caudatum. PLoS One 7:e30598CrossRefPubMedCentralPubMedGoogle Scholar
  26. Logan JD, Wolesensky W (2007) Accounting for temperature in predator functional responses. Nat Resour Model 20:549–574CrossRefGoogle Scholar
  27. Lundberg P, Ranta E, Kaitala V (2000) Species loss leads to community closure. Ecol Lett 3:465–468CrossRefGoogle Scholar
  28. O’Gorman EJ, Pichler DE, Adams G, et al. (2012) Impacts of warming on the structure and functioning of aquatic communities: individual- to ecosystem-level responses. In: Woodward G, Jacob U, O’Gorman EJ (eds) Advances in ecological research: global change in multispecies systems, vol 47. Academic Press, New York, pp 81–176Google Scholar
  29. Petchey OW, McPhearson PT, Casey TM, Morin PJ (1999) Environmental warming alters food web structure and ecosystem function. Nature 402:69–72CrossRefGoogle Scholar
  30. Pörtner HO, Farell AP (2008) Physiology and climate change. Science 322:690–692CrossRefPubMedGoogle Scholar
  31. Rall BC, Vucic-Pestic O, Ehnes RB, Emmerson M, Brose U (2010) Temperature, predator-prey interaction strength and population stability. Glob Change Biol 16:2145–2157CrossRefGoogle Scholar
  32. Richardson AJ, Schoeman DS (2004) Climate impact on plankton ecosystems in the Northeast Atlantic. Science 305:1609–1612CrossRefPubMedGoogle Scholar
  33. Seifert LI, de Castro F, Marquart A, Gaedke U, Weithoff G, Vos M (2014) Heated relations: temperature-mediated shifts in consumption across trophic levels. PLoS One 9:e95046CrossRefPubMedCentralPubMedGoogle Scholar
  34. Sentis A, Hemptinne JL, Brodeur J (2012) Using functional response modeling to investigate the effect of temperature on predator feeding rate and energetic efficiency. Oecologia 169:1117–1125CrossRefPubMedGoogle Scholar
  35. Sentis A, Hemptinne JL, Brodeur J (2013) Effects of simulated heat waves on an experimental plant–herbivore–predator food chain. Glob Change Biol 19:833–842CrossRefGoogle Scholar
  36. Shurin JB, Clasen JL, Greig HS, Kratina P, Thompson PL (2012) Warming shifts top-down and bottom-up control of pond food web structure and function. Phil Trans R Soc 367:3008–3017CrossRefGoogle Scholar
  37. Stachowicz JJ, Terwin JR, Whitlatch RB, Osman RW (2002) Linking climate change and biological invasions: ocean warming facilitates nonindigenous species invasions. Proc Natl Acad Sci 99:15497–15500CrossRefPubMedCentralPubMedGoogle Scholar
  38. Suikkanen S, Pulina S, Engstrom-Ost J, Lehtiniemi M, Lehtinen S, Brutemark A (2013) Climate change and eutrophication induced shifts in northern summer plankton communities. PLoS One 8:e66475CrossRefPubMedCentralPubMedGoogle Scholar
  39. Texeirade Mello F, Meerhoff M, Pekcan-Hekim Z, Jeppesen E (2009) Substantial differences in littoral fish community structure and dynamics in subtropical and temperate shallow lakes. Freshwater Biol 54:1202–1215CrossRefGoogle Scholar
  40. Thompson PL, Shurin JB (2012) Regional zooplankton biodiversity provides limited buffering of pond ecosystems against climate change. J Anim Ecol 81:251–259CrossRefPubMedGoogle Scholar
  41. van der Stap I, Vos M, Mooji WM (2006) Linking herbivore-induced defences to populations dynamics. Freshwater Biol 51:424–434CrossRefGoogle Scholar
  42. van der Stap I, Vos M, Mooji WM (2007a) Inducible defenses and rotifer food chain dynamics. Hydrobiologia 593:103–110CrossRefGoogle Scholar
  43. van der Stap I, Vos M, Mooij WM (2007b) Induced defenses in herbivores and plants differentially modulate a trophic cascade. Ecology 88:2474–2481CrossRefPubMedGoogle Scholar
  44. van der Stap I, Vos M, Tollrian R, Mooij WM (2008) Inducible defenses, competition and shared predation in planktonic food chains. Oecologia 157:697–705CrossRefPubMedGoogle Scholar
  45. van der Stap I, Vos M, Kooi BW, Mulling BTM, van Donk E, Mooij WM (2009) Algal defenses, population stability and the risk of herbivore extinctions: a chemostat model and experiment. Ecol Res 24:1145–1153CrossRefGoogle Scholar
  46. Vandermeer J (2006) Oscillating populations and biodiversity maintenance. Bioscience 56:967–975CrossRefGoogle Scholar
  47. Vasseur DA, McCann KS (2005) A mechanistic approach for modeling temperature-dependent consumer-resource dynamics. Am Nat 166:184–198CrossRefPubMedGoogle Scholar
  48. Verschoor AM, Vos M, van der Stap I (2004) Inducible defenses prevent strong population fluctuations in bi- and tritrophic food chains. Ecol Lett 7:1143–1148CrossRefGoogle Scholar
  49. Vijverberg J, Vos M (2006) Predator-released compounds, ambient temperature and competitive exclusion among differently sized Daphnia species. Freshwater Biol 51:756–767CrossRefGoogle Scholar
  50. Vucic-Pestic O, Ehnes RB, Rall BC, Brose U (2011) Warming up the system: higher predator feeding rates but lower energetic efficiencies. Glob Change Biol 17:1301–1310CrossRefGoogle Scholar
  51. Weithoff G, Walz N (1995) Influence of the cyanobacterium Planktothrix agardhii on population growth and reproductive pattern of the rotifer Brachionus calyciflorus. Hydrobiologia 313(314):381–386CrossRefGoogle Scholar
  52. Wentz FJ, Gentemann C, Smith D, Chelton D (2000) Satellite measurements of sea surface temperature through clouds. Science 288:847–850CrossRefPubMedGoogle Scholar
  53. Winder M, Schindler DE (2004) Climatic effects on the phenology of lake processes. Global Change Biol 10:1844–1856CrossRefGoogle Scholar
  54. Woodward G, Perkins DM, Brown LE (2010) Climate change and freshwater ecosystems: impacts across multiple levels of organization. Phil Trans R Soc B 365:2093–2106CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Linda I. Seifert
    • 1
  • Guntram Weithoff
    • 1
  • Ursula Gaedke
    • 1
    • 2
  • Matthijs Vos
    • 1
    • 3
  1. 1.Department of Ecology and Ecosystem ModellingPotsdam UniversityPotsdamGermany
  2. 2.Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
  3. 3.Institute of Environmental Sciences (CML)Leiden UniversityLeidenThe Netherlands

Personalised recommendations