, Volume 177, Issue 3, pp 875–883 | Cite as

CO2 alters community composition and response to nutrient enrichment of freshwater phytoplankton

  • Etienne Low-DécarieEmail author
  • Graham Bell
  • Gregor F. Fussmann
Global change ecology - Original research


Nutrients can limit the productivity of ecosystems and control the composition of the communities of organisms that inhabit them. Humans are causing atmospheric CO2 concentrations to reach levels higher than those of the past millions of years while at the same time propagating eutrophication through the addition of nutrients to lakes and rivers. We studied the effect of elevated CO2 concentrations, nutrient addition and their interaction in a series of freshwater mesocosm experiments using a factorial design. Our results highlight the important role of CO2 in shaping phytoplankton communities and their response to nutrient addition. We found that CO2 greatly magnified the increase in phytoplankton growth caused by the increased availability of nutrients. Elevated CO2 also caused changes in phytoplankton community composition. As predicted from physiology and laboratory experiments, the taxonomic group that was most limited by current day CO2 concentrations, chlorophytes, increased in relative frequency at elevated CO2. This predictable change in community composition with changes in CO2 is not altered by changes in the availability of other nutrients.


Functional group Carbon cycle Competition Global change Co-limitation 



The Gault Mesocosm Facility was funded by Natural Science and Engineering Research Council of Canada (NSERC). This work was supported by the NSERC through grants to G.F. and G.B. and by NSERC, FRQNT, McGill University (including awards funded by Lorne Trottier and Philip Carpenter) through scholarships to E.L.-D. We thank Rene (Irene) Gregory-Eaves (McGill) and her laboratory for equipment; David Maneli and the staff of the Gault Nature Reserve, Alison Derry, Beatrix Beisner and Genevieve Thibodeau (UQAM) for logistic and technical support; and the 2012 McGill Limnology class for their help with the mesocosms of the October experiment.

Supplementary material

442_2014_3153_MOESM1_ESM.pdf (377 kb)
Supplementary material 1 (PDF 378 kb)


  1. Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372. doi: 10.1111/j.1469-8137.2004.01224.x CrossRefPubMedGoogle Scholar
  2. Anthony KRN, Kline DI, Diaz-Pulido G et al (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci USA 105:17442–17446. doi: 10.1073/pnas.0804478105 CrossRefPubMedCentralPubMedGoogle Scholar
  3. Atwood TB, Hammill E, Greig HS et al (2013) Predator-induced reduction of freshwater carbon dioxide emissions. Nat Geosci 6:1–4. doi: 10.1038/ngeo1734 CrossRefGoogle Scholar
  4. Bellerby RGJ, Schulz KG, Riebesell U et al (2008) Marine ecosystem community carbon and nutrient uptake stoichiometry under varying ocean acidification during the PeECE III experiment. Biogeosciences 5:1517–1527. doi: 10.5194/bg-5-1517-2008 CrossRefGoogle Scholar
  5. Bennett EM, Carpenter SR, Caraco NF (2001) Human impact on erodable phosphorus and eutrophication: a global perspective. Bioscience 51:227–234. doi:10.1641/0006-3568(2001)051[0227:HIOEPA]2.0.CO;2CrossRefGoogle Scholar
  6. Caraco NF, Miller R (1998) Effects of CO2 on competition between a cyanobacterium and eukaryotic phytoplankton. Can J Fish Aquat Sci 55:54–62. doi: 10.1139/f97-202 CrossRefGoogle Scholar
  7. Carpenter SR, Stanley EH, Vander Zanden MJ (2011) State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annu Rev Environ Resour 36:75–99. doi: 10.1146/annurev-environ-021810-094524 CrossRefGoogle Scholar
  8. Catherine A, Escoffier N, Belhocine A (2012) On the use of the FluoroProbe®, a phytoplankton quantification method based on fluorescence excitation spectra for large-scale surveys of lakes and reservoirs. Water Res 46:1771–1784. doi: 10.1016/j.watres.2011.12.056 CrossRefPubMedGoogle Scholar
  9. Cole JJ, Prairie YT (2009) Dissolved CO2. In: Gene EL (ed) Encyclopedia of inland waters. Elsevier, Oxford, pp 30–34CrossRefGoogle Scholar
  10. Cole JJ, Caraco NF, Kling GW, Kratz TK (1994) Carbon dioxide supersaturation in the surface waters of lakes. Science 265:1568–1570. doi: 10.1126/science.265.5178.1568 CrossRefPubMedGoogle Scholar
  11. De M, Huszar VL, Caraco NF (1998) The relationship between phytoplankton composition and physical-chemical variables: a comparison of taxonomic and morphological-functional descriptors in six temperate lakes. Freshw Biol 40:679–696. doi: 10.1046/j.1365-2427.1998.d01-656.x CrossRefGoogle Scholar
  12. Downs TM, Schallenberg M, Burns CW (2008) Responses of lake phytoplankton to micronutrient enrichment: a study in two New Zealand lakes and an analysis of published data. Aquat Sci 70:347–360. doi: 10.1007/s00027-008-8065-6 CrossRefGoogle Scholar
  13. Drenner RW, Mazumder A (1999) Microcosm experiments have limited relevance for community and ecosystem ecology: comment. Ecology 80:1081–1085Google Scholar
  14. Duarte CM, Prairie YT (2005) Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems. Ecosystems 8:862–870. doi: 10.1007/s10021-005-0177-4 CrossRefGoogle Scholar
  15. Elser JJ (2011) Geochemistry. A world awash with nitrogen. Science 334:1504–1505. doi: 10.1126/science.1215567 CrossRefPubMedGoogle Scholar
  16. Elser JJ, Marzolf ER, Goldman CR (1990) Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America: a review and critique of experimental enrichments. Can J Fish Aquat Sci 47:1468–1477. doi: 10.1139/f90-165 CrossRefGoogle Scholar
  17. Falkenberg LJ, Russell BD, Connell SD (2012) Contrasting resource limitations of marine primary producers: implications for competitive interactions under enriched CO2 and nutrient regimes. Oecologia 172:575–583. doi: 10.1007/s00442-012-2507-5 CrossRefPubMedGoogle Scholar
  18. Findlay DL, Kasian SEM (1987) Phytoplankton community responses to nutrient addition in Lake 226, experimental lakes area, Northwestern Ontario. Can J Fish Aquat Sci 44:s35–s46. doi: 10.1139/f87-278 CrossRefGoogle Scholar
  19. Fowler D, Coyle M, Skiba U et al (2013) The global nitrogen cycle in the twenty-first century. Philos Trans R Soc Lond B 368:20130164. doi: 10.1098/rstb.2013.0164 CrossRefGoogle Scholar
  20. Gao K, Xu J, Gao G et al (2012) Rising CO2 and increased light exposure synergistically reduce marine primary productivity. Nat Clim Change 2:519–523. doi: 10.1038/nclimate1507 Google Scholar
  21. Goswami SR (1971) Hydrological regime of Lake Hertel. Am Water Work Assoc 63:671–675. doi: 10.2307/41266259 Google Scholar
  22. Harpole WS, Ngai JT, Cleland EE et al (2011) Nutrient co-limitation of primary producer communities. Ecol Lett 14:852–862. doi: 10.1111/j.1461-0248.2011.01651.x CrossRefPubMedGoogle Scholar
  23. Haukka K, Kolmonen E, Hyder R et al (2006) Effect of nutrient loading on bacterioplankton community composition in lake mesocosms. Microb Ecol 51:137–146. doi: 10.1007/s00248-005-0049-7 CrossRefPubMedGoogle Scholar
  24. Hope D, Dawson JJC, Cresser MS, Billett MF (1995) A method for measuring free CO2 in upland streamwater using headspace analysis. J Hydrol 166:1–14. doi: 10.1016/0022-1694(94)02628-O CrossRefGoogle Scholar
  25. IPCC (2007) Climate Change 2007 - The physical science basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Agenda 996Google Scholar
  26. Jansson M, Karlsson J, Jonsson A (2012) Carbon dioxide supersaturation promotes primary production in lakes. Ecol Lett 15:527–532. doi: 10.1111/j.1461-0248.2012.01762.x CrossRefPubMedGoogle Scholar
  27. Kalff J (1972) Net plankton and nanoplankton production and biomass in a north temperate zone lake. Limnol Oceanogr 17:712–720. doi: 10.4319/lo.1972.17.5.0712 CrossRefGoogle Scholar
  28. Kolak JJ, Long DT, Beals TM et al (1998) Anthropogenic inventories and historical and present accumulation rates of copper in Great Lakes sediments. Appl Geochem 13:59–75. doi: 10.1016/S0883-2927(97)00054-1 CrossRefGoogle Scholar
  29. Kump LR (2002) Reducing uncertainty about carbon dioxide as a climate driver. Nature 419:188–190. doi: 10.1038/nature01087 CrossRefPubMedGoogle Scholar
  30. Kundzewicz Z, Mata L, Arnell N, Döll P (2008) The implications of projected climate change for freshwater resources and their management. Hydrol Sci 53:3–10. doi: 10.1623/hysj.53.1.3 CrossRefGoogle Scholar
  31. Lewis WM, Wurtsbaugh WA (2008) Control of lacustrine phytoplankton by nutrients: erosion of the phosphorus paradigm. Int Rev Hydrobiol 93:446–465. doi: 10.1002/iroh.200811065 CrossRefGoogle Scholar
  32. Lohbeck KT, Riebesell U, Reusch TBH (2012) Adaptive evolution of a key phytoplankton species to ocean acidification. Nat Geosci 5:1–6. doi: 10.1038/ngeo1441 CrossRefGoogle Scholar
  33. Low-Decarie E, FussmannGF, Bell G (2014) Aquatic primary production in a high-CO2 world trends. Ecol Evol 1–10. 10.1016/j.tree.2014.02.006Google Scholar
  34. Low-Décarie E, Fussmann GF, Bell G (2011) The effect of elevated CO2 on growth and competition in experimental phytoplankton communities. Glob Change Biol 17:2525–2535. doi: 10.1111/j.1365-2486.2011.02402.x CrossRefGoogle Scholar
  35. Low-Décarie E, Jewell MD, Fussmann GF, Bell G (2013) Long-term culture at elevated atmospheric CO2 fails to evoke specific adaptation in seven freshwater phytoplankton species. Proc R Soc Lond B 280:20122598. doi: 10.1098/rspb.2012.2598 CrossRefGoogle Scholar
  36. McGillis W, Dacey J, Ware J (2007) Air-water flux reconciliation between the atmospheric CO2 profile and mass balance techniques. In: Garbe CS, Handler RA, Jähne B (eds) Transpir. Air-sea interface meas model parametr. Springer, Heidelberg, pp 1–12Google Scholar
  37. Menge DNL, Hedin LO, Pacala SW (2012) Nitrogen and phosphorus limitation over long-term ecosystem development in terrestrial ecosystems. PLoS ONE 7:e42045. doi: 10.1371/journal.pone.0042045 CrossRefPubMedCentralPubMedGoogle Scholar
  38. Meyer-Harms B, von Bodungen B (1997) Taxon-specific ingestion rates of natural phytoplankton by calanoid copepods in an estuarine environment (Pomeranian Bight, Baltic Sea) determined by cell counts and HPLC analyses of marker pigments. Mar Ecol Prog Ser 153:181–190. doi: 10.3354/meps153181 CrossRefGoogle Scholar
  39. Miller TE, Burns JH, Munguia P et al (2005) A critical review of twenty years’ use of the resource–ratio theory. Am Nat 165:439–448. doi: 10.1086/428681 CrossRefPubMedGoogle Scholar
  40. Moore CM, Mills MM, Arrigo KR et al (2013) Processes and patterns of oceanic nutrient limitation. Nat Geosci 6:701–710. doi: 10.1038/ngeo1765 CrossRefGoogle Scholar
  41. North RL, Guildford SJ, Smith REH et al (2007) Evidence for phosphorus, nitrogen, and iron colimitation of phytoplankton communities in Lake Erie. Limnol Oceanogr 52:315–328. doi: 10.4319/lo.2007.52.1.0315 CrossRefGoogle Scholar
  42. Orr JC, Fabry VJ, Aumont O et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686. doi: 10.1038/nature04095 CrossRefPubMedGoogle Scholar
  43. Pespeni MH, Sanford E, Gaylord B et al (2013) Evolutionary change during experimental ocean acidification. Proc Natl Acad Sci USA 110:6937–6942. doi: 10.1073/pnas.1220673110 CrossRefPubMedCentralPubMedGoogle Scholar
  44. Poorter H, Navas M-L (2003) Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytol 157:175–198. doi: 10.1046/j.1469-8137.2003.00680.x CrossRefGoogle Scholar
  45. Porter KG (1988) Phagotrophic phytoflagellates in microbial food webs. Hydrobiologia 159:89–97. doi: 10.1007/BF00007370 CrossRefGoogle Scholar
  46. R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  47. Rauch JN, Pacyna JM (2009) Earth’s global Ag, Al, Cr, Cu, Fe, Ni, Pb, and Zn cycles. Glob Biogeochem Cycles 23:n/a–n/a. doi:  10.1029/2008GB003376
  48. Riebesell U (2004) Effects of CO2 enrichment on marine phytoplankton. J Oceanogr 60:719–729. doi: 10.1007/s10872-004-5764-z CrossRefGoogle Scholar
  49. Riebesell U, Schulz KG, Bellerby RGJ et al (2007) Enhanced biological carbon consumption in a high CO2 ocean. Nature 450:545–548. doi: 10.1038/nature06267 CrossRefPubMedGoogle Scholar
  50. Robbins LL, Hansen ME, Kleypas JA, Meylan SC (2010) CO2calc: A user-friendly seawater carbon calculator for windows, Mac OS X, and iOS (iPhone). U.S. Geological Survey, Reston, VirginiaGoogle Scholar
  51. Rooney N, Kalff J (2003) Interactions among epilimnetic phosphorus, phytoplankton biomass and bacterioplankton metabolism in lakes of varying submerged macrophyte cover. Hydrobiologia 75:81. doi: 10.1023/A:1026255302443 Google Scholar
  52. Royer DL (2006) CO2-forced climate thresholds during the Phanerozoic. Geochim Cosmochim Acta 70:5665–5675. doi: 10.1016/j.gca.2005.11.031 CrossRefGoogle Scholar
  53. Sanders RW (1991) Mixotrophic protists in marine and freshwater ecosystems. J Protozool 38:76–81. doi: 10.1111/j.1550-7408.1991.tb04805.x CrossRefGoogle Scholar
  54. Sandrini G, Matthijs HCP, Verspagen JMH et al (2014) Genetic diversity of inorganic carbon uptake systems causes variation in CO2 response of the cyanobacterium Microcystis. ISME J 8:589–600. doi: 10.1038/ismej.2013.179 CrossRefPubMedGoogle Scholar
  55. Schindler DW (1971) Carbon, nitrogen, and phosphorus and the eutrophication of freshwater lakes. J Phycol 7:321–329. doi: 10.1111/j.1529-8817.1971.tb01527.x Google Scholar
  56. Schindler DW (1998) Replication versus realism: the need for ecosystem-scale experiments. Ecosystems 1:323–334Google Scholar
  57. Schindler DWD (2006) Recent advances in the understanding and management of eutrophication. Limnol Oceanogr 51:356–363. doi: 10.4319/lo.2006.51.1_part_2.0356 CrossRefGoogle Scholar
  58. Schindler DW, Fee EJ (1973) Variation of dissolved inorganic carbon and its use in estimating primary production and CO2 invasion in lake 227. J Fish Res Board Can 30:1501–1510. doi: 10.1139/f73-240 CrossRefGoogle Scholar
  59. Shapiro J (1997) The role of carbon dioxide in the initiation and maintenance of blue-green dominance in lakes. Freshw Biol 37:307–323. doi: 10.1046/j.1365-2427.1997.00164.x CrossRefGoogle Scholar
  60. Smith VH (2009) Eutrophication. In: Likens GE (ed) Encyclopedia of inland Waters. Elsevier, Oxford, pp 61–73CrossRefGoogle Scholar
  61. Sommer U (2002) Experimental systems in aquatic ecology. eLS 1–8. doi:  10.1002/9780470015902.a0003180.pub2
  62. Spijkerman E, Maberly SC, Coesel PFM (2005) Carbon acquisition mechanisms by planktonic desmids and their link to ecological distribution. Can J Bot 83:850–858. doi:  10.1139/B05-069
  63. Spijkerman E, de Castro F, Gaedke U (2011) Independent colimitation for carbon dioxide and inorganic phosphorus. PLoS ONE 6:e28219. doi: 10.1371/journal.pone.0028219 CrossRefPubMedCentralPubMedGoogle Scholar
  64. Sterner RW (2008) On the phosphorus limitation paradigm for lakes. Int Rev Hydrobiol 93:433–445. doi: 10.1002/iroh.200811068 CrossRefGoogle Scholar
  65. Talling AJF (2010) pH, the CO2 system and freshwater science. BioOne 3:133–146. doi: 10.1608/FRJ-3.2.156 Google Scholar
  66. Tilman D, Fargione J, Wolff B, D’Antonio C (2001) Forecasting agriculturally driven global environmental change. Science 80(292):281–284. doi: 10.1126/science.1057544 CrossRefGoogle Scholar
  67. Tortell PD (2000) Evolutionary and ecological perspectives on carbon acquisition in phytoplankton. Limnol Oceanogr 45:744–750. doi: 10.4319/lo.2000.45.3.0744 CrossRefGoogle Scholar
  68. Tortell PD, DiTullio GR, Sigman DM, Morel FM (2002) CO2 effects on taxonomic composition and nutrient utilization in an Equatorial Pacific phytoplankton assemblage. Mar Ecol Ser 236:37–43CrossRefGoogle Scholar
  69. Verschoor AM, van Dijk MA, Huisman J, van Donk E (2013) Elevated CO2 concentrations affect the elemental stoichiometry and species composition of an experimental phytoplankton community. Freshw Biol 58:597–611. doi: 10.1111/j.1365-2427.2012.02833.x CrossRefGoogle Scholar
  70. Verspagen JMH, Van de Waal DB, Finke JF, et al. (2014) Contrasting effects of rising CO2 on primary production and ecological stoichiometry at different nutrient levels. Ecol Lett. doi:  10.1111/ele.12298

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Etienne Low-Décarie
    • 1
    Email author
  • Graham Bell
    • 2
  • Gregor F. Fussmann
    • 2
  1. 1.School of Biological SciencesUniversity of EssexColchesterUK
  2. 2.Department of BiologyMcGill UniversityMontrealCanada

Personalised recommendations