Advertisement

Oecologia

, Volume 177, Issue 1, pp 73–83 | Cite as

Home-range allometry in coral reef fishes: comparison to other vertebrates, methodological issues and management implications

  • Kirsty L. Nash
  • Justin Q. Welsh
  • Nicholas A. J. Graham
  • David R. Bellwood
Concepts, Reviews and Syntheses

Abstract

Body size has been identified as a key driver of home-range area. Despite considerable research into home-range allometry, the relatively high variability in this relationship among taxa means that the mechanisms driving this relationship are still under debate. To date, studies have predominantly focused on terrestrial taxa, and coral reef fishes in particular have received little attention. We quantitatively reviewed studies examining home range in reef fishes, and assessed the interspecific relationship between body mass and home-range area. Body mass and home range are positively related in reef fishes (slopes of 1.15–1.72), with predators having larger home ranges than herbivorous species. This may be attributed to the mobility and lower abundance of predators’ food items. Coral reef fishes, and fishes in general, appear to occupy a smaller area per unit mass than terrestrial vertebrates (intercepts of −0.92 to 0.07 versus ≥1.14). This is likely linked to the relative metabolic costs of moving through water compared to air. The small home ranges of reef fishes and their apparent reluctance to cross open areas suggest that reserves aimed at protecting fish species may be more effective if located across whole reefs, even if those reefs are comparatively small, rather than if they cover subsections of contiguous reef, as home ranges in the former are less likely to cross reserve boundaries.

Keywords

Movement Spatial ecology Mammals Birds Lizards 

Notes

Acknowledgments

This study was funded by the Australian Research Council. We thank three anonymous reviewers for their detailed comments which significantly improved the manuscript.

Supplementary material

442_2014_3152_MOESM1_ESM.pdf (25 kb)
Supplementary material 1 (PDF 24 kb)

References

  1. Afonso P, Fontes J, Holland KN, Santos RS (2008) Social status determines behaviour and habitat usage in a temperate parrotfish: implications for marine reserve design. Mar Ecol Prog Ser 359:215–227. doi: 10.3354/meps07272 CrossRefGoogle Scholar
  2. Avgar T, Mosser A, Brown GS, Fryxell JM (2013) Environmental and individual drivers of animal movement patterns across a wide geographical gradient. J Anim Ecol 82:96–106. doi: 10.1111/j.1365-2656.2012.02035.x PubMedCrossRefGoogle Scholar
  3. Baker RR (1978) The evolutionary ecology of animal migration. Hodder & Stoughton, LondonGoogle Scholar
  4. Barnett A, Abrantes KG, Seymour J, Fitzpatrick R (2012) Residency and spatial use by reef sharks of an isolated seamount and its implications for conservation. PLoS One 7:e36574. doi: 10.1371/journal.pone.0036574 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bartoń K (2013) MuMIn: multi-model inference, R package version 1.9.13. http://cran.r-project.org/web/packages/MuMIn/index.html
  6. Basset A (1995) Body size-related coexistence: an approach through allometric constraints on home-range use. Ecology 76:1027–1035. doi: 10.2307/1940913 CrossRefGoogle Scholar
  7. Bolden SK (2001) Using acoustic telemetry to determine home range of a coral reef fish. In: Sibert J, Nielsen JL et al (eds) Electronic tagging and tracking in marine fisheries. Kluwer, Dordrecht, pp 167–188Google Scholar
  8. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. doi: 10.1016/j.tree.2008.10.008 PubMedCrossRefGoogle Scholar
  9. Börger L, Franconi N, De Michele G, Gantz A, Meschi F, Manica A, Lovari S, Coulson TIM (2006) Effects of sampling regime on the mean and variance of home range size estimates. J Anim Ecol 75:1393–1405. doi: 10.1111/j.1365-2656.2006.01164.x PubMedCrossRefGoogle Scholar
  10. Börger L, Dalziel BD, Fryxell JM (2008) Are there general mechanisms of animal home range behaviour? A review and prospects for future research. Ecol Lett 11:637–650. doi: 10.1111/j.1461-0248.2008.01182.x PubMedCrossRefGoogle Scholar
  11. Buchmann CM, Schurr FM, Nathan R, Jeltsch F (2011) An allometric model of home range formation explains the structuring of animal communities exploiting heterogeneous resources. Oikos 120:106–118. doi: 10.1111/j.1600-0706.2010.18556.x CrossRefGoogle Scholar
  12. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretical approach, 2nd edn. Springer, New YorkGoogle Scholar
  13. Burt WH (1943) Territoriality and home range concepts as applied to mammals. J Mammal 24:346–352. doi: 10.2307/1374834 CrossRefGoogle Scholar
  14. Cagua EF, Berumen ML, Tyler EHM (2013) Topography and biological noise determine acoustic detectability on coral reefs. Coral Reefs 32:1123–1134. doi: 10.1007/s00338-013-1069-2
  15. Calder WA (1984) Size, function, and life history. Harvard University Press, CambridgeGoogle Scholar
  16. Chapman MR, Kramer DL (2000) Movements of fishes within and among fringing coral reefs in Barbados. Environ Biol Fish 57:11–24. doi: 10.1023/A:1004545724503 CrossRefGoogle Scholar
  17. Civantos E (2000) Home-range ecology, aggressive behaviour, and survival in juvenile lizards, Psammodromus algirus. Can J Zool 78:1681–1685. doi: 10.1139/z00-083 CrossRefGoogle Scholar
  18. Claisse J, Clark T, Schumacher B, McTee S, Bushnell M, Callan C, Laidley C, Parrish J (2011) Conventional tagging and acoustic telemetry of a small surgeonfish Zebrasoma flavescens in a structurally complex coral reef environment. Environ Biol Fish 91:185–201. doi: 10.1007/s10641-011-9771-9 CrossRefGoogle Scholar
  19. Claydon J, McCormick M, Jones G (2012) Patterns of migration between feeding and spawning sites in a coral reef surgeon fish. Coral Reefs 31:77–87. doi: 10.1007/s00338-011-0821-8 CrossRefGoogle Scholar
  20. Fagan WF, Lutscher F, Schneider K (2007) Population and community consequences of spatial subsidies derived from central-place foraging. Am Nat 170:902–915. doi: 10.1086/522836 PubMedCrossRefGoogle Scholar
  21. Fox RJ, Bellwood DR (2011) Unconstrained by the clock? Plasticity of diel activity rhythm in a tropical reef fish, Siganus lineatus. Funct Ecol 25:1096–1105. doi: 10.1111/j.1365-2435.2011.01874.x CrossRefGoogle Scholar
  22. Freiwald J (2012) Movement of adult temperate reef fishes off the west coast of North America. Can J Fish Aquat Sci 69:1362–1374. doi: 10.1139/f2012-068 CrossRefGoogle Scholar
  23. Froese R, Pauly D (2012) FishBase, version (08/2012). http://www.fishbase.org
  24. Gautestad AO, Mysterud I (1995) The home range ghost. Oikos 74:195–204CrossRefGoogle Scholar
  25. GBRMPA (2002) Biophysical operational principles as recommended by the Scientific Steering Committee for the Representative Areas Program. Representative Areas Program background and history (Technical Information Sheet #6). Great Barrier Reef Marine Park Authority, Townsville, Australia p 6Google Scholar
  26. Gillingham MP, Parker KL, Hanley TA (1997) Forage intake by black-tailed deer in a natural environment: bout dynamics. Can J Zool 75:1118–1128. doi: 10.1139/z97-134 CrossRefGoogle Scholar
  27. Green AL, Bellwood DR (2009) Monitoring functional groups of herbivorous reef fishes as indicators of coral reef resilience: a practical guide for coral reef managers in the Asia Pacific Region, 2009 edn. IUCN Working Group on Climate Change and Coral Reefs. IUCN, Gland, p 70Google Scholar
  28. Hamilton RJ, Potuku T, Montambault JR (2011) Community-based conservation results in the recovery of reef fish spawning aggregations in the Coral Triangle. Biol Conserv 144:1850–1858. doi: 10.1016/j.biocon.2011.03.024 CrossRefGoogle Scholar
  29. Harestad AS, Bunnel FL (1979) Home range and body weight: a reevaluation. Ecology 60:389–402. doi: 10.2307/1937667 CrossRefGoogle Scholar
  30. Harris S, Cresswell WJ, Forde PG, Trewhella WJ, Woollard T, Wray S (1990) Home-range analysis using radio-tracking data—a review of problems and techniques particularly as applied to the study of mammals. Mamm Rev 20:97–123. doi: 10.1111/j.1365-2907.1990.tb00106.x CrossRefGoogle Scholar
  31. Haskell JP, Ritchie ME, Olff H (2002) Fractal geometry predicts varying body size scaling relationships for mammal and bird home ranges. Nature 418:527–530. doi: 10.1038/nature00840 PubMedCrossRefGoogle Scholar
  32. Hendriks AJ (2007) The power of size: a meta-analysis reveals consistency of allometric regressions. Ecol Model 205:196–208. doi: 10.1016/j.ecolmodel.2007.02.029 CrossRefGoogle Scholar
  33. Hendriks AJ, Willers BJC, Lenders HJR, Leuven RSEW (2009) Towards a coherent allometric framework for individual home ranges, key population patches and geographic ranges. Ecography 32:929–942. doi: 10.1111/j.1600-0587.2009.05718.x CrossRefGoogle Scholar
  34. Heupel MR, Semmens JM, Hobday AJ (2006) Automated acoustic tracking of aquatic animals: scales, design and deployment of listening station arrays. Mar Freshw Rev 57:1–13. doi: 10.1071/MF05091 CrossRefGoogle Scholar
  35. Holland KN, Lowe CG, Wetherbee BM (1996) Movements and dispersal patterns of blue trevally (Caranx melampygus) in a fisheries conservation zone. Fish Res 25:279–292. doi: 10.1016/0165-7836(95)00442-4 CrossRefGoogle Scholar
  36. Jetz W, Carbone C, Fulford J, Brown JH (2004) The scaling of animal space use. Science 306:266–268. doi: 10.1126/science.1102138 PubMedCrossRefGoogle Scholar
  37. Johnson C, Parker K, Heard D (2001) Foraging across a variable landscape: behavioral decisions made by woodland caribou at multiple spatial scales. Oecologia 127:590–602. doi: 10.1007/s004420000573 CrossRefGoogle Scholar
  38. Jouventin P, Weimerskirch H (1990) Satellite tracking of Wandering albatrosses. Nature 343:746–748. doi: 10.1038/343746a0 CrossRefGoogle Scholar
  39. Kelt DA, Vuren DHV (2001) The ecology and macroecology of mammalian home range area. Am Nat 157:637–645. doi: 10.1086/320621 PubMedCrossRefGoogle Scholar
  40. Kie JG et al (2010) The home-range concept: are traditional estimators still relevant with modern telemetry technology? Philos Trans R Soc B 365:2221–2231. doi: 10.1098/rstb.2010.0093 CrossRefGoogle Scholar
  41. Kramer DL, Chapman MR (1999) Implications of fish home range size and relocation for marine reserve function. Environ Biol Fish 55:65–79. doi: 10.1023/A:1007481206399 CrossRefGoogle Scholar
  42. Laver PN, Kelly MJ (2008) A critical review of home range studies. J Wildl Manag 72:290–298. doi: 10.2193/2005-589 CrossRefGoogle Scholar
  43. Lindstedt SL, Miller BJ, Buskirk SW (1986) Home range, time, and body size in mammals. Ecology 67:413–418. doi: 10.2307/1938584 CrossRefGoogle Scholar
  44. Lira PK, Fernandez FAdS (2009) A comparison of trapping- and radiotelemetry-based estimates of home range of the neotropical opossum Philander frenatus. Mamm Biol Z Saugetierkd 74:1–8. doi: 10.1016/j.mambio.2008.05.002 Google Scholar
  45. Makarieva AM, Gorshkov VG, Li B-L (2005) Why do population density and inverse home range scale differently with body size? Implications for ecosystem stability. Ecol Complex 2:259–271. doi: 10.1016/j.ecocom.2005.04.006
  46. McNab BK (1963) Bioenergetics and the determination of home range size. Am Nat 97:133–140CrossRefGoogle Scholar
  47. Meyer CG, Papastamatiou YP, Clark TB (2010) Differential movement patterns and site fidelity among trophic groups of reef fishes in a Hawaiian marine protected area. Mar Biol 157:1499–1511. doi: 10.1007/s00227-010-1424-6 CrossRefGoogle Scholar
  48. Minns CK (1995) Allometry of home range size in lake and river fishes. Can J Fish Aquat Sci 52:1499–1508. doi: 10.1139/f95-144 CrossRefGoogle Scholar
  49. Moffitt EA, Botsford LW, Kaplan DM, O’Farrell MR (2009) Marine reserve networks for species that move within a home range. Ecol Appl 19:1835–1847. doi: 10.1890/08-1101.1 PubMedCrossRefGoogle Scholar
  50. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142. doi: 10.1111/j.2041-210x.2012.00261.x CrossRefGoogle Scholar
  51. Nash KL, Graham NAJ, Bellwood DR (2013) Fish foraging patterns, vulnerability to fishing and implications for the management of ecosystem function across scales. Ecol Appl 23:1632–1644. doi: 10.1890/12-2031.1 PubMedCrossRefGoogle Scholar
  52. Nilsen E, Pedersen S, Linnell JC (2008) Can minimum convex polygon home ranges be used to draw biologically meaningful conclusions? Ecol Res 23:635–639. doi: 10.1007/s11284-007-0421-9 CrossRefGoogle Scholar
  53. Nyström M, Folke C (2001) Spatial resilience of coral reefs. Ecosystems 4:406–417. doi: 10.1007/s10021-001-0019-y CrossRefGoogle Scholar
  54. Owen-Smith N, Fryxell JM, Merrill EH (2010) Foraging theory upscaled: the behavioural ecology of herbivore movement. Philos Trans R Soc B 365:2267–2278. doi: 10.1098/rstb.2010.0095 CrossRefGoogle Scholar
  55. Palumbi SR (2004) Marine reserves and ocean neighborhoods: the spatial scale of marine populations and their management. Ann Rev Environ Resour 29:31–68. doi: 10.1146/annurev.energy.29.062403.102254 CrossRefGoogle Scholar
  56. Pawar S, Dell AI, Van MS (2012) Dimensionality of consumer search space drives trophic interaction strengths. Nature 486:485–489PubMedGoogle Scholar
  57. Raffaelli D, Solan M, Webb TJ (2005) Do marine and terrestrial ecologists do it differently? Mar Ecol Prog Ser 304:283–289Google Scholar
  58. R Development Core Team (2011) R: a language and environment for statistical computing, 2.13.0 edn. R Project for Statistical Computing, ViennaGoogle Scholar
  59. Saïd S, Servanty S (2005) The influence of landscape structure on female roe deer home-range size. Landsc Ecol 20:1003–1012. doi: 10.1007/s10980-005-7518-8 CrossRefGoogle Scholar
  60. Sale PF, Cowen RK, Danilowicz BS, Jones GP, Kritzer JP, Lindeman KC, Planes S, Polunin NVC, Russ GR, Sadovy YJ, Steneck RS (2005) Critical science gaps impede use of no-take fishery reserves. Trends Ecol Evol 20:74–80. doi: 10.1016/j.tree.2004.11.007 PubMedCrossRefGoogle Scholar
  61. Savitz J, Bardygula LG, Harder T, Stuechsli K (1993) Diel and seasonal utilization of home ranges in a small lake by smallmouth bass (Micropterus dolomieui). Ecol Freshw Fish 2:31–39. doi: 10.1111/j.1600-0633.1993.tb00014.x CrossRefGoogle Scholar
  62. Schoener TW (1968) Sizes of feeding territories among birds. Ecology 49:123–141. doi: 10.2307/1933567 CrossRefGoogle Scholar
  63. Schoener TW, Schoener A (1982) Intraspecific variation in home-range size in some Anolis lizards. Ecology 63:809–823. doi: 10.2307/1936801 CrossRefGoogle Scholar
  64. Scholz F, Kappeler P (2004) Effects of seasonal water scarcity on the ranging behavior of Eulemur fulvus rufus. Int J Primatol 25:599–613. doi: 10.1023/B:IJOP.0000023577.32587.0b CrossRefGoogle Scholar
  65. Seton ET (1909) Life-histories of northern animals. Charles Scribner’s Sons, New YorkCrossRefGoogle Scholar
  66. Shaffer ML (1981) Minimum population sizes for species conservation. Bioscience 31:131–134. doi: 10.2307/1308256 CrossRefGoogle Scholar
  67. Snijders T, Bosker R (1999) Multilevel analysis: an introduction to basic and advanced multilevel modeling. Sage, LondonGoogle Scholar
  68. Turgeon K, Robillard A, Grégoire J, Duclos V, Kramer DL (2010) Functional connectivity from a reef fish perspective: behavioral tactics for moving in a fragmented landscape. Ecology 91:3332–3342. doi: 10.1890/09-2015.1 PubMedCrossRefGoogle Scholar
  69. Turner FB, Jennrich RI, Weintraub JD (1969) Home ranges and body size of lizards. Ecology 50:1076–1081. doi: 10.2307/1936898 CrossRefGoogle Scholar
  70. van Rooij JM, Kroon FJ, Videler JJ (1996) The social and mating system of the herbivorous reef fish Sparisoma viride: one-male versus multi-male groups. Environ Biol Fish 47:353–378. doi: 10.1007/bf00005050 CrossRefGoogle Scholar
  71. Vanni MJ (2002) Nutrient cycling by animals in freshwater ecosystems. Ann Rev Ecol Syst 33:341–370. doi: 10.1146/annurev.ecolsys.33.010802.150519 CrossRefGoogle Scholar
  72. Webb TJ (2012) Marine and terrestrial ecology: unifying concepts, revealing differences. Trends Ecol Evol 27:535–541. doi: 10.1016/j.tree.2012.06.002 PubMedCrossRefGoogle Scholar
  73. Welsh JQ, Bellwood DR (2012a) How far do schools of roving herbivores rove? A case study using Scarus rivulatus. Coral Reefs 31:991–1003. doi: 10.1007/s00338-012-0922-z
  74. Welsh JQ, Bellwood DR (2012b) Spatial ecology of the steephead parrotfish (Chlorurus microrhinos): an evaluation using acoustic telemetry. Coral Reefs 31:55–65. doi: 10.1007/s00338-011-0813-8 CrossRefGoogle Scholar
  75. Welsh JQ, Bellwood DR (2014) Herbivorous fishes, ecosystem function and mobile links on coral reefs. Coral Reefs 33:303–311. doi: 10.1007/s00338-014-1124-7 CrossRefGoogle Scholar
  76. Welsh JQ, Fox R, Webber D, Bellwood DR (2012) Performance of remote acoustic receivers within a coral reef habitat: implications for array design. Coral Reefs 31:693–702. doi: 10.1007/s00338-012-0892-1 CrossRefGoogle Scholar
  77. Welsh JQ, Goatley CHR, Bellwood DR (2013) The ontogeny of home ranges: evidence from coral reef fishes. Proc R Soc B 280:20132066. doi: 10.1098/rspb.2013.2066 PubMedCentralPubMedCrossRefGoogle Scholar
  78. White EP, Ernest SKM, Kerkhoff AJ, Enquist BJ (2007) Relationships between body size and abundance in ecology. Trends Ecol Evol 22:323–330. doi: 10.1016/j.tree.2007.03.007 PubMedCrossRefGoogle Scholar
  79. Woolnough DA, Downing JA, Newton TJ (2009) Fish movement and habitat use depends on water body size and shape. Ecol Freshw Fish 18:83–91. doi: 10.1111/j.1600-0633.2008.00326.x CrossRefGoogle Scholar
  80. Worton BJ (1989) Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70:164–168. doi: 10.2307/1938423 CrossRefGoogle Scholar
  81. Zeller D (1997) Home range and activity patterns of the coral trout Plectropomus leopardus (Serranidae). Mar Ecol Prog Ser 154:65–77. doi: 10.3354/meps154065 CrossRefGoogle Scholar
  82. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Kirsty L. Nash
    • 1
  • Justin Q. Welsh
    • 1
    • 2
  • Nicholas A. J. Graham
    • 1
  • David R. Bellwood
    • 1
    • 2
  1. 1.ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleAustralia
  2. 2.School of Marine and Tropical BiologyJames Cook UniversityTownsvilleAustralia

Personalised recommendations