Oecologia

, Volume 177, Issue 3, pp 619–630 | Cite as

Tree species diversity mitigates disturbance impacts on the forest carbon cycle

Highlighted Student Research

Abstract

Biodiversity fosters the functioning and stability of forest ecosystems and, consequently, the provision of crucial ecosystem services that support human well-being and quality of life. In particular, it has been suggested that tree species diversity buffers ecosystems against the impacts of disturbances, a relationship known as the “insurance hypothesis”. Natural disturbances have increased across Europe in recent decades and climate change is expected to amplify the frequency and severity of disturbance events. In this context, mitigating disturbance impacts and increasing the resilience of forest ecosystems is of growing importance. We have tested how tree species diversity modulates the impact of disturbance on net primary production and the total carbon stored in living biomass for a temperate forest landscape in Central Europe. Using the simulation model iLand to study the effect of different disturbance regimes on landscapes with varying levels of tree species richness, we found that increasing diversity generally reduces the disturbance impact on carbon storage and uptake, but that this effect weakens or even reverses with successional development. Our simulations indicate a clear positive relationship between diversity and resilience, with more diverse systems experiencing lower disturbance-induced variability in their trajectories of ecosystem functioning. We found that positive effects of tree species diversity are mainly driven by an increase in functional diversity and a modulation of traits related to recolonization and resource usage. The results of our study suggest that increasing tree species diversity could mitigate the effects of intensifying disturbance regimes on ecosystem functioning and improve the robustness of forest carbon storage and the role of forests in climate change mitigation.

Keywords

Carbon cycle Natural disturbances Forest landscape dynamics Tree diversity iLand model 

Supplementary material

442_2014_3150_MOESM1_ESM.docx (3.8 mb)
Supplementary material 1 (DOCX 3905 kb)

References

  1. Baeten L, Verheyen K, Wirth C et al (2013) A novel comparative research platform designed to determine the functional significance of tree species diversity in European forests. Perspect Plant Ecol Evol Syst 15:281–291. doi:10.1016/j.ppees.2013.07.002 CrossRefGoogle Scholar
  2. Bengtsson J, Nilsson SG, Franc A, Menozzi P (2000) Biodiversity, disturbances, ecosystem function and management of European forests. For Ecol Manage 132:39–50CrossRefGoogle Scholar
  3. Bohn U, Gollub G, Hettwer C et al (2004) Karte der natürlichen vegetation Europe (Map of the natural vegetation of Europe) Maßtab (scale) 1:2500000. Bundesamt für Naturschutz (Federal Agency for Nature), LeipzigGoogle Scholar
  4. Breiman L (2001) Random forests. Machine Learning 45:5–32CrossRefGoogle Scholar
  5. Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320:1456–1457. doi:10.1126/science.1155458 CrossRefPubMedGoogle Scholar
  6. Cardinale BJ, Gross K, Fritschie K et al (2013) Biodiversity simultaneously enhances the production and stability of community biomass, but the effects are independent. Ecology 94:1697–1707CrossRefPubMedGoogle Scholar
  7. Cutler DR, Edwards TC, Beard KH et al (2007) Random forests for classification in ecology. Ecology 88:2783–2792CrossRefPubMedGoogle Scholar
  8. Déqué M, Somot S, Sanchez-Gomez E et al (2011) The spread amongst ENSEMBLES regional scenarios: regional climate models, driving general circulation models and interannual variability. Clim Dyn 38:951–964. doi:10.1007/s00382-011-1053-x CrossRefGoogle Scholar
  9. Duursma RA, Marshall JD, Robinson AP, Pangle RE (2007) Description and test of a simple process-based model of forest growth for mixed-species stands. Ecol Modell 203:297–311. doi:10.1016/j.ecolmodel.2006.11.032 CrossRefGoogle Scholar
  10. FAO (2007) Food and agriculture organization of the United Nations. State of the world’s forests 2007. Rome, ItalyGoogle Scholar
  11. Fernandes PM, Vega JA, Jiménez E, Rigolot E (2008) Fire resistance of European pines. For Ecol Manage 256:246–255. doi:10.1016/j.foreco.2008.04.032 CrossRefGoogle Scholar
  12. Franklin JF, Spies TA, Van Pelt R et al (2002) Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For Ecol Manage 155:399–423CrossRefGoogle Scholar
  13. Gross K, Cardinale BJ, Fox JW et al (2014) Species richness and the temporal stability of biomass production: a new analysis of recent biodiversity experiments. Am Nat 183:1–12. doi:10.1086/673915 CrossRefPubMedGoogle Scholar
  14. Güneralp B, Gertner G (2007) Feedback loop dominance analysis of two tree mortality models: relationship between structure and behavior. Tree Physiol 27:269–280CrossRefPubMedGoogle Scholar
  15. Holling CS (1996) Engineering resilience versus ecological resilience. Eng Ecol constraints. pp 31–43Google Scholar
  16. Hooper DU, Chapin FS III, Ewel JJ et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35CrossRefGoogle Scholar
  17. Jiang L, Wan S, Li L (2009) Species diversity and productivity: why do results of diversity-manipulation experiments differ from natural patterns? J Ecol 97:603–608. doi:10.1111/j.1365-2745.2009.01503.x CrossRefGoogle Scholar
  18. Klenner W, Arsenault A, Brockerhoff EG, Vyse A (2009) Biodiversity in forest ecosystems and landscapes: a conference to discuss future directions in biodiversity management for sustainable forestry. For Ecol Manage 258:S1–S4. doi:10.1016/j.foreco.2009.10.037 CrossRefGoogle Scholar
  19. Landsberg JJ, Waring RH (1997) A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For Ecol Manage 95:209–228CrossRefGoogle Scholar
  20. Lasky JR, Uriarte M, Boukili VK et al (2014) The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecol Lett 17(9):1158–1167. doi:10.1111/ele.12322 CrossRefPubMedGoogle Scholar
  21. Liaw A, Wiener M (2002) Classification and regression by random forest. R News 2:18–22Google Scholar
  22. Lischke H, Löffler TJ (2006) Intra-specific density dependence is required to maintain species diversity in spatio-temporal forest simulations with reproduction. Ecol Modell 198:341–361. doi:10.1016/j.ecolmodel.2006.05.005 CrossRefGoogle Scholar
  23. Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76. doi:10.1038/35083573 CrossRefPubMedGoogle Scholar
  24. Mitchell SJ (2013) Wind as a natural disturbance agent in forests: a synthesis. Forestry 86:147–157. doi:10.1093/forestry/cps058 CrossRefGoogle Scholar
  25. Mölder A, Bernhardt-Römermann M, Schmidt W (2008) Herb-layer diversity in deciduous forests: raised by tree richness or beaten by beech? For Ecol Manage 256:272–281. doi:10.1016/j.foreco.2008.04.012 CrossRefGoogle Scholar
  26. Morin X, Fahse L, Scherer-Lorenzen M, Bugmann H (2011) Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecol Lett 14:1211–1219. doi:10.1111/j.1461-0248.2011.01691.x CrossRefPubMedGoogle Scholar
  27. Moser W, Hansen M (2006) The relationship between diversity and productivity in selected forests of the Lake States Region (USA): relative impact of species versus. structural diversity. In: McRoberts RE, Reams GA, Deusen PC Van, McWilliams WH (eds) Proceedings of the 8th annual forest inventory and analysis symposium 2006, U.S. Department of Agriculture, Forest Service, Monterey, California, pp 149–157Google Scholar
  28. Nguyen H, Herbohn J, Firn J, Lamb D (2012) Biodiversity–productivity relationships in small-scale mixed-species plantations using native species in Leyte province, Philippines. For Ecol Manage 274:81–90. doi:10.1016/j.foreco.2012.02.022 CrossRefGoogle Scholar
  29. Nitschke CR, Innes JL (2008) A tree and climate assessment tool for modelling ecosystem response to climate change. Ecol Modell 210:263–277. doi:10.1016/j.ecolmodel.2007.07.026 CrossRefGoogle Scholar
  30. Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob Ecol Biogeogr 20:170–180. doi:10.1111/j.1466-8238.2010.00592.x CrossRefGoogle Scholar
  31. Pasztor F, Matulla C, Rammer W, Lexer MJ (2014) Drivers of the bark beetle disturbance regime in Alpine forests in Austria. For Ecol Manage 318:349–358. doi:10.1016/j.foreco.2014.01.044 CrossRefGoogle Scholar
  32. Potter KM, Woodall CW (2014) Does biodiversity make a difference? Relationships between species richness, evolutionary diversity, and aboveground live tree biomass across U.S. forests. For Ecol Manage 321:117–129. doi:10.1016/j.foreco.2013.06.026
  33. R Core Team (2013) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, AustriaGoogle Scholar
  34. Sandri M, Zuccolotto P (2006) Variable selection using random forests. In: Zani S, Cerioli A, Riani M, Vichi P (eds) Data analysis classification and the forward search. Springer, Berlin, pp 263–270CrossRefGoogle Scholar
  35. Schelhaas M-J, Nabuurs G-J, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Glob Chang Biol 9:1620–1633. doi:10.1046/j.1365-2486.2003.00684.x CrossRefGoogle Scholar
  36. Scherer-Lorenzen M (2014) The functional role of biodiversity in the context of global change. In: Coomes D, Burslem D, Simonson W (eds) Forest global change. Cambridge University Press, Cambridge, pp 195–238CrossRefGoogle Scholar
  37. Schmidt I, Leuschner C, Mölder A, Schmidt W (2009) Structure and composition of the seed bank in monospecific and tree species-rich temperate broad-leaved forests. For Ecol Manage 257:695–702. doi:10.1016/j.foreco.2008.09.052 CrossRefGoogle Scholar
  38. Schmidt M, Hanewinkel M, Kändler G et al (2010) An inventory-based approach for modeling single-tree storm damage––experiences with the winter storm of 1999 in southwestern Germany. Can J For Res 40:1636–1652. doi:10.1139/X10-099 CrossRefGoogle Scholar
  39. Seidl R, Schelhaas M-J, Lexer MJ (2011) Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob Chang Biol 17:2842–2852. doi:10.1111/j.1365-2486.2011.02452.x CrossRefGoogle Scholar
  40. Seidl R, Rammer W, Scheller RM, Spies TA (2012a) An individual-based process model to simulate landscape-scale forest ecosystem dynamics. Ecol Modell 231:87–100. doi:10.1016/j.ecolmodel.2012.02.015 CrossRefGoogle Scholar
  41. Seidl R, Spies T, Rammer W et al (2012b) Multi-scale drivers of spatial variation in old-growth forest carbon density disentangled with Lidar and an individual-based landscape model. Ecosystems 15:1321–1335. doi:10.1007/s10021-012-9587-2
  42. Seidl R, Rammer W, Blennow K (2014a) Simulating wind disturbance impacts on forest landscapes: tree-level heterogeneity matters. Environ Model Softw 51:1–11. doi:10.1016/j.envsoft.2013.09.018 CrossRefGoogle Scholar
  43. Seidl R, Rammer W, Spies TA (2014b) Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Ecol Appl. doi:10.1890/14-0255.1 Google Scholar
  44. Seidl R, Schelhaas M, Rammer W, Verkerk PJ (2014c) Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Chang 4(9):806–810. doi:10.1038/NCLIMATE2318 CrossRefGoogle Scholar
  45. Shannon C, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, ChampaignGoogle Scholar
  46. Spiecker H, Hansen J, Klimo E et al (2004) Norway Spruce conversion––options and consequences. EFI Res Rep 18:320Google Scholar
  47. Thom D, Seidl R, Steyrer G et al (2013) Slow and fast drivers of the natural disturbance regime in Central European forest ecosystems. For Ecol Manage 307:293–302. doi:10.1016/j.foreco.2013.07.017 CrossRefGoogle Scholar
  48. Thompson JR, Spies TA (2010) Factors associated with crown damage following recurring mixed-severity wildfires and post-fire management in southwestern Oregon. Landsc Ecol 25:775–789. doi:10.1007/s10980-010-9456-3 CrossRefGoogle Scholar
  49. Thompson I, Mackey B, McNulty S, Mosseler A (2009) Forest resilience, biodiversity, and climate change. A synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. Technical series no. 43. Secretariat of the Convention on Biological Diversity, MontrealGoogle Scholar
  50. Tilman D (1996) Biodiversity: population versus ecosystem stability. Ecology 77:350–363. doi:10.1038/367363a0 CrossRefGoogle Scholar
  51. Turner MG, Donato DC, Romme WH (2012) Consequences of spatial heterogeneity for ecosystem services in changing forest landscapes: priorities for future research. Landsc Ecol. doi:10.1007/s10980-012-9741-4 Google Scholar
  52. Vilà M, Inchausti P, Vayreda J et al (2005) Confounding factors in the observational productivity-diversity relationship in forests. In: Scherer-Lorenzen M, Körner C, Schulze E-D (eds) Forest diversity function. Springer, Berlin, pp 65–86CrossRefGoogle Scholar
  53. Vockenhuber EA, Scherber C, Langenbruch C et al (2011) Tree diversity and environmental context predict herb species richness and cover in Germany’s largest connected deciduous forest. Perspect Plant Ecol Evol Syst 13:111–119CrossRefGoogle Scholar
  54. Waring RH, Running SW (2007) Forest ecosystems: analysis at multiple scales, 3rd edn. Elsevier/Academic Press, Amsterdam/San DiegoGoogle Scholar
  55. White PS, Jentsch A (2001) The search for generality in studies of disturbance and ecosystem dynamics. Ecosystems 62:399–450Google Scholar
  56. Wimberly MC, Spies TA, Long CJ, Whitlock C (2000) Simulating historical variability in the amount of old forests in the Oregon coast range. Conserv Biol 14:167–180. doi:10.1046/j.1523-1739.2000.98284.x CrossRefGoogle Scholar
  57. Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment : the insurance hypothesis. Proc Natl Acad Sci USA 96:1463–1468. doi:10.1073/pnas.96.4.1463 CrossRefPubMedCentralPubMedGoogle Scholar
  58. Zhang Y, Chen HYH, Reich PB (2012) Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J Ecol 100:742–749. doi:10.1111/j.1365-2745.2011.01944.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mariana Silva Pedro
    • 1
  • Werner Rammer
    • 1
  • Rupert Seidl
    • 1
  1. 1.Department of Forest and Soil Sciences, Institute of SilvicultureUniversity of Natural Resources and Life SciencesViennaAustria

Personalised recommendations