, Volume 177, Issue 3, pp 631–643 | Cite as

Reduced microsatellite heterozygosity does not affect natal dispersal in three contrasting roe deer populations

  • Cécile Vanpé
  • Lucie Debeffe
  • A. J. Mark Hewison
  • Erwan Quéméré
  • Jean-François Lemaître
  • Maxime Galan
  • Britany Amblard
  • François Klein
  • Bruno Cargnelutti
  • Gilles Capron
  • Joël Merlet
  • Claude Warnant
  • Jean-Michel Gaillard
Behavioral ecology - Original research


Although theoretical studies have predicted a link between individual multilocus heterozygosity and dispersal, few empirical studies have investigated the effect of individual heterozygosity on dispersal propensity or distance. We investigated this link using measures of heterozygosity at 12 putatively neutral microsatellite markers and natal dispersal behaviour in three contrasting populations of European roe deer (Capreolus capreolus), a species displaying pre-saturation condition-dependent natal dispersal. We found no effect of individual heterozygosity on either dispersal propensity or dispersal distance. Average heterozygosity was similar across the three studied populations, but dispersal propensity and distance differed markedly among them. In Aurignac, dispersal propensity and distance were positively related to individual body mass, whereas there was no detectable effect of body mass on dispersal behaviour in Chizé and Trois Fontaines. We suggest that we should expect both dispersal propensity and distance to be greater when heterozygosity is lower only in those species where dispersal behaviour is driven by density-dependent competition for resources.


Dispersal propensity Dispersal distance Capreolus capreolus Genetic diversity Body mass 



CV, LD, and JFL were funded by the PATCH RPDOC ANR project (ANR-12-PDOC-0017-01) awarded to CV from the French National Research Agency. This study was supported by the PATCH RPDOC ANR project, the INDHET ANR project (ANR-12 -BSV7-0023-02), the French National Institute for Agricultural Research (INRA), and the Office National de la Chasse et de la Faune Sauvage (ONCFS). We acknowledge L. Vial for her contribution in molecular lab work. We also thank the local hunting associations, the Fédération Départementale des Chasseurs de la Haute Garonne, as well as numerous coworkers and volunteers for their assistance during roe deer capture. Genetic data used in this work were produced through molecular genetic analysis technical facilities of the labex “Centre Méditerranéen de l’Environnement et de la Biodiversité”. Finally, we are grateful to Petter Kjellander, Aaron Shafer, and an anonymous referee for their constructive and helpful comments and suggestions on a previous draft of this paper.

Supplementary material

442_2014_3139_MOESM1_ESM.docx (482 kb)
Supplementary material 1 (DOCX 481 kb)


  1. Abbas F, Morellet N, Hewison AJM, Merlet J, Cargnelutti B, Lourtet B, Angibault JM, Daufresne T, Aulagnier S, Verheyden H (2011) Landscape fragmentation generates spatial variation of diet composition and quality in a generalist herbivore. Oecologia 167(2):401–411. doi:10.1007/s00442-011-1994-0 CrossRefPubMedGoogle Scholar
  2. Andersen R, Duncan P, Linnell JDC (1998) The European Roe Deer: the biology of success. Scandinavian University Press, OsloGoogle Scholar
  3. Balloux F, Amos W, Coulson T (2004) Does heterozygosity estimate inbreeding in real populations? Mol Ecol 13(10):3021–3031. doi:10.1111/j.1365-294X.2004.02318.x CrossRefPubMedGoogle Scholar
  4. Bates D, Maechler M, Bolker B (2011) Package lme4. R: online http://cranr-project.org/web/packages/lme4/lme4pdf
  5. Bengtsson BO (1978) Avoiding inbreeding: at what cost? J Theor Biol 73:439–444. doi:10.1016/0022-5193(78)90151-0 CrossRefPubMedGoogle Scholar
  6. Bonnot N, Gaillard JM, Coulon A, Galan M, Cosson JF, Delorme D, Klein F, Hewison AJM (2010) No difference between the sexes in fine-scale spatial genetic structure of roe deer. PLoS ONE 5(12):e14436. doi:10.1371/journal.pone.0014436 CrossRefPubMedCentralPubMedGoogle Scholar
  7. Bonte D, de la Peña E (2009) Evolution of body condition-dependent dispersal in metapopulations. J Evol Biol 22:1242–1251. doi:10.1111/j.1420-9101.2009.01737.x CrossRefPubMedGoogle Scholar
  8. Börger L, Franconi N, De Michele G, Gantz A, Meschi F, Manica A, Lovari S, Coulson TIM (2006) Effects of sampling regime on the mean and variance of home range size estimates. J Anim Ecol 75(6):1393–1405. doi:10.1111/j.1365-2656.2006.01164.x CrossRefPubMedGoogle Scholar
  9. Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev 80:205–225. doi:10.1017/S1464793104006645 CrossRefPubMedGoogle Scholar
  10. Britten H (1996) Meta-analyses of the association between multilocus heterozygosity and fitness. Evolution 50: 2158–2164. http://www.jstor.org/stable/2410687
  11. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, NYGoogle Scholar
  12. Chapman JR, Nakagawa S, Coltman DW, Slate J, Sheldon BC (2009) A quantitative review of heterozygosity—fitness correlations in animal populations. Mol Ecol 18(13):2746–2765. doi:10.1111/j.1365-294X.2009.04247.x CrossRefPubMedGoogle Scholar
  13. Clobert J, Danchin E, Dhondt AA, Nichos JD (2001) Dispersal. Oxford University Press, NYGoogle Scholar
  14. Clobert J, Le Galliard JF, Cote J, Meylan S, Massot M (2009) Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol Lett 12:197–209. doi:10.1111/j.1461-0248.2008.01267.x CrossRefPubMedGoogle Scholar
  15. Coltman DW, Slate J (2003) Microsatellite measures of inbreeding: a meta-analysis. Evolution 57(5):971–983. doi:10.1111/j.0014-3820.2003.tb00309.x CrossRefPubMedGoogle Scholar
  16. Coulon A (2010) Genhet: an easy-to-use R function to estimate individual heterozygosity. Mol Ecol Res 10(1):167–169. doi:10.1111/j.1755-0998.2009.02731.x CrossRefGoogle Scholar
  17. Coulon A, Cosson JF, Angibault JM, Cargnelutti B, Galan M, Morellet N, Petit E, Aulagnier S, Hewison AJM (2004) Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach. Mol Ecol 13(9):2841–2850. doi:10.1111/j.1365-294X.2004.02253.x CrossRefPubMedGoogle Scholar
  18. Coulon A, Cosson JF, Morellet N, Angibault JM, Cargnelutti B, Galan M, Aulagnier S, Hewison AJM (2006) Dispersal is not female biased in a resource-defence mating ungulate, the European roe deer. Proc R Soc Lond B 273:341–348. doi:10.1098/rspb.2005.3329 CrossRefGoogle Scholar
  19. Da Silva A, Gaillard JM, Yoccoz NG, Hewison AJM, Galan M, Coulson T, Allainé D, Vial L, Delorme D, Van Laere G, Klein F, Luikart G (2009) Heterozygosity–fitness correlations revealed by neutral and candidate gene markers in roe deer from a long-term study. Evolution 63(2):403–417. doi:10.1111/j.1558-5646.2008.00542.x CrossRefPubMedGoogle Scholar
  20. David P (1998) Heterozygosity–fitness correlations: new perspective on old problems. Heredity 80:531–537. doi:10.1046/j.1365-2540.1998.00393.x CrossRefPubMedGoogle Scholar
  21. David P, Pujol B, Viard F, Castella V, Goudet J (2007) Reliable selfing rate estimates from imperfect population genetic data. Mol Ecol 16(12):2474–2487. doi:10.1111/j.1365-294X.2007.03330.x CrossRefPubMedGoogle Scholar
  22. Debeffe L, Morellet N, Cargnelutti B, Lourtet B, Bon R, Gaillard JM, Hewison AJM (2012) Condition-dependent natal dispersal in a large herbivore: heavier animals show a greater propensity to disperse and travel further. J Anim Ecol 81:1327–1337. doi:10.1111/j.1365-2656.2012.02014.x CrossRefPubMedGoogle Scholar
  23. Debeffe L, Morellet N, Cargnelutti B, Lourtet B, Coulon A, Gaillard JM, Bon R, Hewison AJM (2013) Exploration as a key component of natal dispersal: dispersers explore more than philopatric individuals in roe deer. Anim Behav 86(1):143–151. doi:10.1016/j.anbehav.2013.05.005 CrossRefGoogle Scholar
  24. Debeffe L, Morellet N, Verheyden-Tixier H, Hoste H, Gaillard JM, Sevila J, Hewison AJM (2014) Parasite load contributes to condition-dependent dispersal in a wild population of large herbivores. Oikos (in press)Google Scholar
  25. Douhard M, Gaillard JM, Delorme D, Capron G, Duncan P, Klein F, Bonenfant C (2013) Variation in adult body mass of roe deer: early environmental conditions influence early and late body growth of females. Ecology 94:1805–1814. doi:10.1890/13-0034.1 CrossRefPubMedGoogle Scholar
  26. Forstmeier W, Schielzeth H, Mueller JC, Ellegren H, Kempenaers B (2012) Heterozygosity—fitness correlations in zebra finches: microsatellite markers can be better than their reputation. Mol Ecol 21(13):3237–3249. doi:10.1111/j.1365-294X.2012.05593.x CrossRefPubMedGoogle Scholar
  27. Gadgil M (1971) Dispersal: population consequences and evolution. Ecology 52:253–261CrossRefGoogle Scholar
  28. Gaillard JM, Delorme D, Boutin JM, Van Laere G, Boisaubert B, Pradel R (1993) Roe deer survival patterns: a comparative analysis of contrasting populations. J Anim Ecol 62: 778–791. http://www.jstor.org/stable/5396
  29. Gaillard JM, Delorme D, Boutin JM, Van Laere G, Boisaubert B (1996) Body mass of roe deer fawns during winter in 2 contrasting populations. J Wildl Manage 60: 29–36. http://www.jstor.org/stable/3802036
  30. Gaillard JM, Boutin JM, Delorme D, Van Laere G, Duncan P, Lebreton JD (1997) Early survival in roe deer: causes and consequences of cohort variation in two contrasted populations. Oecologia 112(4):502–513. doi:10.1007/s004420050338 CrossRefGoogle Scholar
  31. Gaillard JM, Andersen R, Delorme D, Linnell JDC (1998) Family effects on growth and survival of juvenile roe deer. Ecology 79(8): 2878–2889. http://www.jstor.org/stable/176523
  32. Gaillard JM, Hewison AJM, Kjellander P, Pettorelli N, Bonenfant C, Van Moorter B, Liberg O, Andrén H, Van Laere G, Klein F, Angibault JM, Coulon A, Vanpé C (2008) Population density and sex do not influence fine-scale natal dispersal in roe deer. Proc R Soc Lond B 275:2025–2030. doi:10.1098/rspb.2008.0393 CrossRefGoogle Scholar
  33. Gaillard JM, Hewison AJM, Klein F, Plard F, Douhard M, Davison R, Bonenfant C (2013) How does climate change influence demographic processes of widespread species? Lessons from the comparative analysis of contrasted populations of roe deer. Ecol Lett 16:48–57. doi:10.1111/ele12059 CrossRefPubMedGoogle Scholar
  34. Galan M, Cosson JF, Aulagnier S, Maillard JC, Thévenon S, Hewison AJM (2003) Cross-amplification tests of ungulate primers in roe deer (Capreolus capreolus) to develop a multiplex panel of 12 microsatellite loci. Mol Ecol Notes 3(1):142–146. doi:10.1046/j.1471-8286.2003.00384.x CrossRefGoogle Scholar
  35. Gillingham MA, Cézilly F, Wattier R, Béchet A (2013) Evidence for an association between post-fledging dispersal and microsatellite multilocus heterozygosity in a large population of greater flamingos. PLoS One 8(11):e81118. doi:10.1371/journal.pone.0081118 CrossRefPubMedCentralPubMedGoogle Scholar
  36. Gilot-Fromont E, Jégo M, Bonenfant C, Gibert P, Rannou B, Klein F, Gaillard JM (2012) Immune phenotype and body condition in roe deer: individuals with high body condition have different, not stronger immunity. PLoS One 7(9):e45576. doi:10.1371/journal.pone.0045576 CrossRefPubMedCentralPubMedGoogle Scholar
  37. Gueijman A, Ayali A, Ram Y, Hadany L (2013) Dispersing away from bad genotypes: the evolution of Fitness-Associated Dispersal (FAD) in homogeneous environments. BMC Evol Biol 13(1): 125. http://www.biomedcentral.com/1471-2148/13/125
  38. Guillaume F, Perrin N (2006) Joint evolution of dispersal and inbreeding load. Genetics 173(1):497–509. doi:10.1534/genetics.105.046847 CrossRefPubMedCentralPubMedGoogle Scholar
  39. Hadany L, Eshel I, Motro U (2004) No place like home: competition, dispersal and complex adaptation. J Evol Biol 17(6):1328–1336. doi:10.1111/j.1420-9101.2004.00768.x CrossRefPubMedGoogle Scholar
  40. Hamel S, Garel M, Festa Bianchet M, Gaillard JM,  Côté SD (2009) Spring normalized difference vegetation index (NDVI) predicts annual variation in timing of peak faecal crude protein in mountain ungulates. J Appl Ecol 46(3):582–589. doi:10.1111/j.1365-2664.2009.01643.x
  41. Hamilton RM, May WD (1977) Dispersal in stable habitats. Nature 269:578–581. doi:10.1038/269578a0 CrossRefGoogle Scholar
  42. Hansson B, Westerberg L (2002) On the correlation between heterozygosity and fitness in natural populations. Mol Ecol 11:2467–2474. doi:10.1046/j.1365-294X.2002.01644.x CrossRefPubMedGoogle Scholar
  43. Hansson B, Bensch S, Hasselquist D (2003) Heritability of dispersal in the great reed warbler. Ecol Letters 6:290–294. doi:10.1046/j.1461-0248.2003.00436.x CrossRefGoogle Scholar
  44. Hewison AJM, Vincent JP, Angibault JM, Delorme D, Van Laere G, Gaillard JM (1999) Tests of estimation of age from tooth wear on roe deer of known age: variation within and among populations. Can J Zool 77(1):58–67. doi:10.1139/z98-183 CrossRefGoogle Scholar
  45. Hewison AJM, Gaillard JM, Angibault JM, Van Laere G, Vincent JP (2002) The influence of density on post-weaning growth in roe deer Capreolus capreolus fawns. J Zool 257(03):303–309. doi:10.1017/S0952836902000900 CrossRefGoogle Scholar
  46. Hewison AJM, Morellet N, Verheyden H, Daufresne T, Angibault JM, Cargnelutti B, Merlet J, Picot D, Rames JL, Joachim J, Lourtet B, Serrano E, Bideau E, Cebe N (2009) Landscape fragmentation influences winter body mass of roe deer. Ecography 32:1062–1070. doi:10.1111/j.1600-0587.2009.05888.x CrossRefGoogle Scholar
  47. Hoffman JI, Simpson F, David P, Rijks JM, Kuiken T, Thorne MA, Lacy RC, Dasmahapatra KK (2014) High-throughput sequencing reveals inbreeding depression in a natural population. Proc Nat Acad Sci USA 111(10): 3775–3780. http://www.pnas.org/cgi/doi/10.1073/pnas
  48. Howard WE (1960) Innate and environmental dispersal of individual vertebrates. Am Midl Nat 63: 152–161. http://www.jstor.org/stable/2422936
  49. Kalinowski ST, Wagner AP, Taper ML (2007) Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106. doi:10.1111/j.1365-294X.2007.03089.x CrossRefPubMedGoogle Scholar
  50. Kardos M, Allendorf FW, Luikart G (2014) Evaluating the role of inbreeding depression in heterozygosity–fitness correlations: how useful are tests for identity disequilibrium? Mol Ecol Res 14(3):519–530. doi:10.1111/1755-0998.12193 CrossRefGoogle Scholar
  51. Kenward RE, Rushton SP, Perrin CM, Macdonald DW, South AB (2002) From marking to modelling: dispersal study techniques for land vertebrates. Blackwell Publishing, MaldelGoogle Scholar
  52. Kjellander P, Hewison AJM, Liberg O, Angibault JM, Bideau E, Cargnelutti B (2004) Experimental evidence for density-dependence of home-range size in roe deer (Capreolus capreolus L): a comparison of two long-term studies. Oecologia 139(3):478–485. doi:10.1007/s00442-004-1529-z CrossRefPubMedGoogle Scholar
  53. Mainguy J, Cote SD, Coltman DW (2009) Multilocus heterozygosity, parental relatedness and individual fitness components in a wild mountain goat. Oreamnos americanus population. Mol Ecol 18(10):2297–2306. doi:10.1111/j.1365-294X.2009.04197.x Google Scholar
  54. Massot M, Clobert J, Lorenzon P, Rossi JM (2002) Condition-dependent dispersal and ontogeny of the dispersal behaviour: an experimental approach. J Anim Ecol 71(2):253–261. doi:10.1046/j.1365-2656.2002.00592.x CrossRefGoogle Scholar
  55. Matthysen E (2005) Density-dependent dispersal in birds and mammals. Ecography 28(3):403–416. doi:10.1111/j.0906-7590.2005.04073.x CrossRefGoogle Scholar
  56. McLoughlin PD, Gaillard JM, Boyce, Bonenfant C, Messier F, Duncan P, Delorme D, Van Moorter B, Saïd S, Klein F (2007) Lifetime reproductive success and composition of the home range in a large herbivore. Ecology 88(12):3192–3201. doi:10.1890/06-1974.1 CrossRefPubMedGoogle Scholar
  57. Miller JM, Coltman DW (2014) Assessment of identity disequilibrium and its relation to empirical heterozygosity fitness correlations: a meta-analysis. Mole Ecol 23(8):1899–1909. doi:10.1111/mec.12707 CrossRefGoogle Scholar
  58. Motro U (1991) Avoiding inbreeding and sibling competition—the evolution of sexual dimorphism for dispersal. Am Nat 137:108–115CrossRefGoogle Scholar
  59. Nilsen EB, Gaillard JM, Andersen R, Odden J, Delorme D, Van Laere G, Linnell JD (2009) A slow life in hell or a fast life in heaven: demographic analyses of contrasting roe deer populations. J Anim Ecol 78(3):585–594. doi:10.1111/j.1365-2656.2009.01523.x CrossRefPubMedGoogle Scholar
  60. Nussey DH, Coulson T, Delorme D, Clutton-Brock TH, Pemberton JM, Festa-Bianchet M, Gaillard JM (2011) Patterns of body mass senescence and selective disappearance differ among three species of free-living ungulates. Ecology 92(10):1936–1947. doi:10.1890/11-0308.1 CrossRefPubMedGoogle Scholar
  61. Ortego J, Yannic G, Shafer A, Mainguy J, Festa-Bianchet M, Coltman DW, Cote SD (2011) Temporal dynamics of genetic variability in a mountain goat (Oreamnos americanus) population. Mol Ecol 20(8):1601–1611. doi:10.1111/j.1365-294X.2011.05022.x CrossRefPubMedGoogle Scholar
  62. Pettorelli N, Gaillard JM, Van Laere G, Duncan P, Kjellander P, Liberg O, Delorme D, Maillard D (2002) Variations in adult body mass in roe deer: the effects of population density at birth and of habitat quality. Proc R Soc Lond B 269(1492):747–753. doi:10.1098/rspb.2001.1791 CrossRefGoogle Scholar
  63. Pettorelli N, Gaillard JM, Mysterud A, Duncan P, Delorme D, Van Laere G, Klein F (2006) Using a proxy of plant productivity (NDVI) to find key periods for animal performance: the case of roe deer. Oikos 112(3):565–572. doi:10.1111/j.0030-1299.2006.14447.x CrossRefGoogle Scholar
  64. Pinheiro J, Bates D, DebRoy S, Sarkar D, the R Development Core Team (2013) nlme: Linear and Nonlinear Mixed Effects Models. R package version 31-111Google Scholar
  65. Plard F, Gaillard JM, Coulson T, Hewison AJM, Delorme D, Warnant C, Nilsen EB, Bonenfant C (2014) Long-lived and heavier females give birth earlier in roe deer. Ecography 37(3):241–249. doi:10.1111/j.1600-0587.2013.00414.x CrossRefGoogle Scholar
  66. R Development Core Team (2010) R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. http://www.R-projectorg/
  67. Raymond M, Rousset F (1995) genepop Version 1.2: population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  68. Roshier D, Reid J (2003) On animal distributions in dynamic landscapes. Ecography 26(4):539–544. doi:10.1034/j.1600-0587.2003.03473.x CrossRefGoogle Scholar
  69. Roze D, Rousset F (2005) Inbreeding depression and the evolution of dispersal rates: a multilocus model. Am Nat 166:708–721. doi:10.1086/497543 CrossRefPubMedGoogle Scholar
  70. Roze D, Rousset F (2009) Strong effects of heterosis on the evolution of dispersal rates. J Evol Biol 22(6):1221–1233. doi:10.1111/j.1420-9101.2009.01735.x CrossRefPubMedGoogle Scholar
  71. Selonen V, Hanski IK (2010) Condition-dependent, phenotype-dependent and genetic-dependent factors in the natal dispersal of a solitary rodent. J Anim Ecol 79:1093–1100. doi:10.1111/j.1365-2656.2010.01714.x CrossRefPubMedGoogle Scholar
  72. Shafer AB, Poissant J, Côté SD, Coltman DW (2011) Does reduced heterozygosity influence dispersal? A test using spatially structured populations in an alpine ungulate. Biol Lett 7(3):433–435. doi:10.1098/rsbl.2010.1119 CrossRefPubMedCentralPubMedGoogle Scholar
  73. Slate J, David P, Dodds KG, Veenvliet BA, Glass BC, Broad TE, McEwan JC (2004) Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: theoretical expectations and empirical data. Heredity 93(3):255–265. doi:10.1038/sj.hdy.6800485 CrossRefPubMedGoogle Scholar
  74. Slate J, Gratten J, Beraldi D, Stapley J, Hale M, Pemberton JM (2009) Gene mapping in the wild with SNPs: guidelines and future directions. Genetica 136(1):97–107. doi:10.1007/s10709-008-9317-z CrossRefPubMedGoogle Scholar
  75. Snoeijs T, Van de Casteele T, Adriaensen F, Matthysen E, Eens M (2004) A strong association between immune responsiveness and natal dispersal in a songbird. Proc R Soc Lond B 271(4):199–201. doi:10.1098/rsbl.2003.0148 CrossRefGoogle Scholar
  76. Spinks AC, Jarvis JUM, Bennett NC (2000) Comparative patterns of philopatry and dispersal in two common mole-rat populations: implications for the evolution of mole-rat sociality. J Anim Ecol 69:224–234. doi:10.1046/j.1365-2656.2000.00388.x CrossRefGoogle Scholar
  77. Strandgaard H (1972) The Roe Deer (Capreolus Capreolus) Population at Kalø And the Factors Regulating Its Size. Dan Rev Game Biol 7:1–205Google Scholar
  78. Szulkin M, Bierne N, David P (2010) Heterozygosity–fitness correlations: a time for reappraisal. Evolution 64(5):1202–1217. doi:10.1111/j.1558-5646.2010.00966.x PubMedGoogle Scholar
  79. Vanpé C, Kjellander P, Galan M, Cosson JF, Aulagnier Hewison AJM (2008) Mating system, sexual dimorphism and the opportunity for sexual selection in a territorial ungulate. Behav Ecol 19(2):309–316. doi:10.1093/beheco/arm132 CrossRefGoogle Scholar
  80. Vanpé C, Kjellander P, Gaillard JM, Cosson JF, Galan M, Hewison AJM (2009) Multiple paternity occurs with low frequency in the territorial roe deer, Capreolus capreolus. Biol J Linn Soc 97:128–139. doi:10.1111/j.1095-8312.2009.01196.x CrossRefGoogle Scholar
  81. Vanpé C, Gaillard JM, Kjellander P, Liberg O, Delorme D, Hewison AJM (2010) Assessing the intensity of sexual selection on male body mass and antler size in the weakly dimorphic roe deer : is bigger better ? Oikos 119(9):1484–1492. doi:10.1111/j.1600-0706.2010.18312.x CrossRefGoogle Scholar
  82. Wahlström K, Kjellander P (1995) Ideal free distribution and natal dispersal in female roe deer. Oecologia 103:302–308. doi:10.1007/BF00328618 CrossRefGoogle Scholar
  83. Wahlström LK, Liberg O (1995a) Contrasting dispersal patterns in two Scandinavian roe deer Capreolus capreolus populations. Wildl Biol 1(3):159–164Google Scholar
  84. Wahlström LK, Liberg O (1995b) Patterns of dispersal and seasonal migration in roe deer (Capreolus capreolus). J Zool 235(3):455–467. doi:10.1111/j.1469-7998.1995.tb01762.x CrossRefGoogle Scholar
  85. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  86. Williams JS (1999) Compensatory reproduction and dispersal in an introduced mountain goat population in central Montana. Wildl Soc Bull 27(4): 1019–1024. http://www.jstor.org/stable/3783661
  87. Wingfield JC (2003) Control of behavioural strategies for capricious environments. Anim Behav 66:807–815. doi:10.1006/anbe.2003.2298 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Cécile Vanpé
    • 1
  • Lucie Debeffe
    • 1
    • 2
  • A. J. Mark Hewison
    • 2
  • Erwan Quéméré
    • 2
  • Jean-François Lemaître
    • 1
  • Maxime Galan
    • 2
    • 3
  • Britany Amblard
    • 1
    • 3
  • François Klein
    • 4
  • Bruno Cargnelutti
    • 2
  • Gilles Capron
    • 5
  • Joël Merlet
    • 2
  • Claude Warnant
    • 4
  • Jean-Michel Gaillard
    • 1
  1. 1.Laboratoire de Biométrie et Biologie Evolutive (LBBE), CNRS UMR5558Université Claude Bernard Lyon 1Villeurbanne CedexFrance
  2. 2.Laboratoire Comportement et Ecologie de la Faune Sauvage (CEFS)INRA UR35Castanet-TolosanFrance
  3. 3.INRA, UMR CBGP, (INRA/IRD/Cirad/Montpellier SupAgro)Montferrier-Sur-Lez CedexFrance
  4. 4.ONCFS, CNERA Cervidés-SanglierBar-Le-DucFrance
  5. 5.ONCFS, Délégation Inter-Régionale Poitou–Charentes LimousinPoitiersFrance

Personalised recommendations