, Volume 177, Issue 3, pp 669–677 | Cite as

Life history trait differentiation and local adaptation in invasive populations of Ambrosia artemisiifolia in China

  • Xiao-Meng Li
  • Deng-Ying She
  • Da-Yong Zhang
  • Wan-Jin Liao
Population ecology - Original research


Local adaptation has been suggested to play an important role in range expansion, particularly among invasive species. However, the extent to which local adaptation affects the success of an invasive species and the factors that contribute to local adaptation are still unclear. This study aimed to investigate a case of population divergence that may have contributed to the local adaptation of invasive populations of Ambrosia artemisiifolia in China. Common garden experiments in seven populations indicated clinal variations along latitudinal gradients, with plants from higher latitudes exhibiting earlier flowering and smaller sizes at flowering. In reciprocal transplant experiments, plants of a northern Beijing origin produced more seeds at their home site than plants of a southern Wuhan origin, and the Wuhan-origin plants had grown taller at flowering than the Beijing-origin plants in Wuhan, which is believed to facilitate pollen dispersal. These results suggest that plants of Beijing origin may be locally adapted through female fitness and plants from Wuhan possibly locally adapted through male fitness. Selection and path analysis suggested that the phenological and growth traits of both populations have been influenced by natural selection and that flowering time has played an important role through its direct and indirect effects on the relative fitness of each individual. This study evidences the life history trait differentiation and local adaptation during range expansion of invasive A. artemisiifolia in China.


Flowering time Latitudinal cline Reciprocal transplant experiments Selection analysis Range expansion 



We thank Ming-Xun Ren and Xue Gu for their assistance in the seed collection and field work in Wuhan and Professor Spencer Barrett for providing helpful comments on the manuscript. This work was supported by the National Natural Science Foundation of China (31121003) and the State Key Laboratory of Earth Surface Processes and Resource Ecology. The experiments comply with the current laws of China in which the experiments were performed.

Supplementary material

442_2014_3127_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 18 kb)
442_2014_3127_MOESM2_ESM.docx (50 kb)
Supplementary material 2 (DOCX 50 kb)


  1. Barrett SCH, Colautti RI, Eckert CG (2008) Plant reproductive systems and evolution during biological invasion. Mol Ecol 17(1):373–383. doi: 10.1111/j.1365-294X.2007.03503.x CrossRefPubMedGoogle Scholar
  2. Chun YJ, Fumanal B, Laitung B, Bretagnolle F (2010) Gene flow and population admixture as the primary post-invasion processes in common ragweed (Ambrosia artemisiifolia) populations in France. New Phytol 185(4):1100–1107. doi: 10.1111/j.1469-8137.2009.03129.x CrossRefPubMedGoogle Scholar
  3. Colautti RI, Barrett SCH (2010) Natural selection and genetic constraints on flowering phenology in an invasive plant. Int J Plant Sci 171(9):960–971. doi: 10.1086/656444 CrossRefGoogle Scholar
  4. Colautti RI, Barrett SC (2013) Rapid adaptation to climate facilitates range expansion of an invasive plant. Science 342(6156):364–366CrossRefPubMedGoogle Scholar
  5. Colautti RI, Eckert CG, Barrett SCH (2010) Evolutionary constraints on adaptive evolution during range expansion in an invasive plant. Proc R Soc B Biol Sci 277(1689):1799–1806. doi: 10.1098/rspb.2009.2231 CrossRefGoogle Scholar
  6. Conner JK, Hartl DL (2004) A primer of ecological genetics. Sinauer, SunderlandGoogle Scholar
  7. Deen W, Hunt T, Swanton CJ (1998) Influence of temperature, photoperiod, and irradiance on the phenological development of common ragweed (Ambrosia artemisiifolia). Weed Sci 46(5):555–560Google Scholar
  8. Ebeling SK, Stocklin J, Hensen I, Auge H (2011) Multiple common garden experiments suggest lack of local adaptation in an invasive ornamental plant. J Plant Ecol 4(4):209–220. doi: 10.1093/jpe/rtr007 CrossRefGoogle Scholar
  9. Eriksen RL, Desronvil T, Hierro JL, Kesseli R (2012) Morphological differentiation in a common garden experiment among native and non-native specimens of the invasive weed yellow starthistle (Centaurea solstitialis). Biol Invasions 14(7):1459–1467. doi: 10.1007/s10530-012-0172-6 CrossRefGoogle Scholar
  10. Freeman DC, McArthur ED, Harper KT, Blauer AC (1981) Influence of environment on the floral sex-ratio of monoecious plants. Evolution 35(1):194–197. doi: 10.2307/2407956 CrossRefGoogle Scholar
  11. Friedman J, Barrett SCH (2008) High outcrossing in the annual colonizing species Ambrosia artemisiifolia (Asteraceae). Ann Bot 101(9):1303–1309. doi: 10.1093/aob/mcn039 CrossRefPubMedCentralPubMedGoogle Scholar
  12. Friedman J, Barrett SCH (2011) Genetic and environmental control of temporal and size-dependent sex allocation in a wind-pollinated plant. Evolution 65(7):2061–2074. doi: 10.1111/j.1558-5646.2011.01284.x CrossRefPubMedGoogle Scholar
  13. Gaudeul M, Giraud T, Kiss L, Shykoff JA (2011) Nuclear and chloroplast microsatellites show multiple introductions in the worldwide invasion history of common ragweed, Ambrosia artemisiifolia. PLoS One 6(3):e17658. doi: 10.1371/journal.pone.0017658 CrossRefPubMedCentralPubMedGoogle Scholar
  14. Genton BJ, Kotanen PM, Cheptou PO, Adolphe C, Shykoff JA (2005a) Enemy release but no evolutionary loss of defence in a plant invasion: an inter-continental reciprocal transplant experiment. Oecologia 146(3):404–414. doi: 10.1007/s00442-005-0234-x CrossRefPubMedGoogle Scholar
  15. Genton BJ, Shykoff JA, Giraud T (2005b) High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Mol Ecol 14(14):4275–4285. doi: 10.1111/j.1365-294X.2005.02750.x CrossRefPubMedGoogle Scholar
  16. Gladieux P, Giraud T, Kiss L, Genton BJ, Jonot O, Shykoff JA (2011) Distinct invasion sources of common ragweed (Ambrosia artemisiifolia) in Eastern and Western Europe. Biol Invasions 13(4):933–944. doi: 10.1007/s10530-010-9880-y CrossRefGoogle Scholar
  17. Gonzalo-Turpin H, Hazard L (2009) Local adaptation occurs along altitudinal gradient despite the existence of gene flow in the alpine plant species Festuca eskia. J Ecol 97(4):742–751. doi: 10.1111/j.1365-2745.2009.01509.x CrossRefGoogle Scholar
  18. Griffith TM, Watson MA (2005) Stress avoidance in a common annual: reproductive timing is important for local adaptation and geographic distribution. J Evol Biol 18(6):1601–1612. doi: 10.1111/j.1420-9101.2005.01021.x CrossRefPubMedGoogle Scholar
  19. Griffith TM, Watson MA (2006) Is evolution necessary for range expansion? Manipulating reproductive timing of a weedy annual transplanted beyond its range. Am Nat 167(2):153–164. doi: 10.1086/498945 CrossRefPubMedGoogle Scholar
  20. Haggerty BP, Galloway LF (2011) Response of individual components of reproductive phenology to growing season length in a monocarpic herb. J Ecol 99(1):242–253. doi: 10.1111/j.1365-2745.2010.01744.x CrossRefGoogle Scholar
  21. Hereford J (2009) A quantitative survey of local adaptation and fitness trade-offs. Am Nat 173(5):579–588. doi: 10.1086/597611 CrossRefPubMedGoogle Scholar
  22. Hodgins KA, Rieseberg L (2011) Genetic differentiation in life-history traits of introduced and native common ragweed (Ambrosia artemisiifolia) populations. J Evol Biol 24(12):2731–2749. doi: 10.1111/j.1420-9101.2011.02404.x CrossRefPubMedGoogle Scholar
  23. Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7(12):1225–1241. doi: 10.1111/j.1461-0248.2004.00684.x CrossRefGoogle Scholar
  24. Kilkenny FF, Galloway LF (2013) Adaptive divergence at the margin of an invaded range. Evolution 67(3):722–731. doi: 10.1111/j.1558-5646.2012.01829.x CrossRefPubMedGoogle Scholar
  25. Klinkhamer PGL, deJong TJ, Metz H (1997) Sex and size in cosexual plants. Trends Ecol Evol 12(7):260–265. doi: 10.1016/s0169-5347(97)01078-1 CrossRefPubMedGoogle Scholar
  26. Kollmann J, Banuelos MJ (2004) Latitudinal trends in growth and phenology of the invasive alien plant Impatiens glandulifera (Balsaminaceae). Divers Distrib 10(5–6):377–385. doi: 10.1111/j.1366-9516.2004.00126.x CrossRefGoogle Scholar
  27. Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37(6):1210–1226. doi: 10.2307/2408842 CrossRefGoogle Scholar
  28. Leger EA, Rice KJ (2007) Assessing the speed and predictability of local adaptation in invasive California poppies (Eschscholzia californica). J Evol Biol 20(3):1090–1103. doi: 10.1111/j.1420-9101.2006.01292.x CrossRefPubMedGoogle Scholar
  29. Leimu R, Fischer M (2008) A meta-analysis of local adaptation in plants. PLoS One 3(12):e4010. doi: 10.1371/journal.pone.0004010 CrossRefPubMedCentralPubMedGoogle Scholar
  30. Li XM, Liao WJ, Wolfe LM, Zhang DY (2012) No evolutionary shift in the mating system of North American Ambrosia artemisiifolia (Asteraceae) following its introduction to China. PLoS One 7(2):e31935. doi: 10.1371/journal.pone.0031935 CrossRefPubMedCentralPubMedGoogle Scholar
  31. Mitchell RJ (2001) Path analysis: pollination. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Oxford University Press, New YorkGoogle Scholar
  32. Novy A, Flory SL, Hartman JM (2013) Evidence for rapid evolution of phenology in an invasive grass. J Evol Biol 26(2):443–450. doi: 10.1111/jeb.12047 CrossRefPubMedGoogle Scholar
  33. Paquin V, Aarssen LW (2004) Allometric gender allocation in Ambrosia artemisiifolia (Asteraceae) has adaptive plasticity. Am J Bot 91(3):430–438. doi: 10.3732/ajb.91.3.430 CrossRefPubMedGoogle Scholar
  34. Payne WW (1963) Morphology of inflorescence of ragweeds (Ambrosia-Franseria: Compositae). Am J Bot 50(9):872–880. doi: 10.2307/2439774 CrossRefGoogle Scholar
  35. Samis KE, Murren CJ, Bossdorf O, Donohue K, Fenster CB, Malmberg RL, Purugganan MD, Stinchcombe JR (2012) Longitudinal trends in climate drive flowering time clines in North American Arabidopsis thaliana. Ecol Evol 2(6):1162–1180. doi: 10.1002/ece3.262 CrossRefPubMedCentralPubMedGoogle Scholar
  36. Santamaria L, Figuerola J, Pilon JJ, Mjelde M, Green AJ, De Boer T, King RA, Gornall RJ (2003) Plant performance across latitude: the role of plasticity and local adaptation in an aquatic plant. Ecology 84(9):2454–2461. doi: 10.1890/02-0431 CrossRefGoogle Scholar
  37. Sherrard ME, Maherali H (2012) Local adaptation across a fertility gradient is influenced by soil biota in the invasive grass, Bromus inermis. Evol Ecol 26(3):529–544. doi: 10.1007/s10682-011-9518-2 CrossRefGoogle Scholar
  38. Sutherland WJ, Freckleton RP, Godfray HCJ, Beissinger SR, Benton T, Cameron DD, Carmel Y, Coomes DA, Coulson T, Emmerson MC (2013) Identification of 100 fundamental ecological questions. J Ecol 101(1):58–67CrossRefGoogle Scholar
  39. Wan FH, Guo JY, Zhang F (2009) Research on biological invasions in China. Science Press, BeijingGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Xiao-Meng Li
    • 1
  • Deng-Ying She
    • 1
  • Da-Yong Zhang
    • 1
  • Wan-Jin Liao
    • 1
  1. 1.State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological EngineeringBeijing Normal UniversityBeijingChina

Personalised recommendations