, Volume 177, Issue 2, pp 431–440 | Cite as

Spatial foraging segregation by close neighbours in a wide-ranging seabird

  • Filipe R. CeiaEmail author
  • Vitor H. Paiva
  • Ricardo S. Ceia
  • Sandra Hervías
  • Stefan Garthe
  • João C. Marques
  • Jaime A. Ramos
Population ecology - Original research


Breeding seabirds are central-place foragers and therefore exploit food resources most intensively nearer their colonies. When nesting aggregations are close to one another density-dependent competition is likely to be high, potentially promoting foraging segregation (i.e. neighbouring colonies may segregate to search for food in different areas). However, little is known about spatial segregation in foraging behaviour between closely adjacent colonies, particularly in species that are wide-ranging foragers. Here, we tested for foraging segregation between two sub-colonies of a wide-ranging seabird, Cory’s shearwater Calonectris borealis, separated by only 2 km, on a small Island in the North Atlantic. During the 2010 chick-rearing period, 43 breeding adults of both sexes were simultaneously sampled at both sub-colonies. A GPS logger was deployed on each individual and removed after several foraging trips at sea. Blood samples (plasma and red blood cells) were collected from each tracked individual for stable isotope analysis. Results indicated partial spatial segregation between the two sub-colonies during local foraging trips (i.e. those of ≤1 day duration and 216 km from the colony) accounting for 84.2 % of all trips recorded. The location of the breeding sub-colony influenced the direction of travel of birds during local trips resulting in sub-colony-specific foraging areas. Although the oceanographic conditions associated with the foraging range of the two sub-colonies differed, no differences were found in the habitat exploited and in their estimated diets. This suggests that birds concentrated their feeding activity in patches of similar habitat and prey during the chick-rearing period.


Calonectris Diet GPS tracking Individual specialization Stable isotopes 



This research was co-sponsored by the Foundation for Science and Technology (Portugal) and the European Social Fund (POPH, EU) through a PhD grant to Filipe R. Ceia (SFRH/BD/64558/2009). The authors would like to thank the support given by the LIFE project “Safe Islands for Seabirds” (LIFE07 NAT/P/000649). We thank P. Geraldes and C. Silva for help in the field, J. Xavier for help in identification of prey items, C. Docal for conducting stable isotope analyses and J. Reynolds for helpful corrections and comments on the manuscript.

Supplementary material

442_2014_3109_MOESM1_ESM.docx (73 kb)
Supplementary material 1 (DOCX 73 kb)


  1. Agostinelli C, Lund U (2011) R package ‘circular’: circular statistics (version 0.4–3). Accessed 05 June 2013
  2. Ashmole NP (1963) The regulation of numbers of tropical and oceanic birds. Ibis 103:458–473. doi: 10.1111/j.1474-919X.1963.tb06766.x Google Scholar
  3. Bearhop S, Waldron S, Votier SC, Furness RW (2002) Factors that influence assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood and feathers. Physiol Biochem Zool 75:451–458. doi: 10.1086/342800 PubMedCrossRefGoogle Scholar
  4. Bost CA, Cotté C, Bailleul F, Cherel Y, Charrassin JB, Guinet C, Ainley DG, Weimerskirch H (2009) The importance of oceanographic fronts to marine birds and mammals of the southern oceans. J Mar Syst 78:363–376. doi: 10.1016/j.jmarsys.2008.11.022 CrossRefGoogle Scholar
  5. Cairns DK (1989) The regulation of seabird colony size: a hinterland model. Am Nat 134:141–146CrossRefGoogle Scholar
  6. Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Modell 197:516–519. doi: 10.1016/j.ecolmodel.2006.03.017 CrossRefGoogle Scholar
  7. Ceia FR, Phillips RA, Ramos JA, Cherel Y, Vieira RP, Richard P, Xavier JC (2012) Short- and long-term consistency in the foraging niche of wandering albatrosses. Mar Biol 159:1581–1591. doi: 10.1007/s00227-012-1946-1 CrossRefGoogle Scholar
  8. Ceia FR, Paiva VH, Garthe S, Marques JC, Ramos JA (2014) Can variations in the spatial distribution at sea and isotopic niche width be associated with consistency in the isotopic niche of a pelagic seabird species? Mar Biol 161:1861–1872. doi: 10.1007/s00227-014-2468-9
  9. Cherel Y, Hobson KA, Hassani S (2005a) Isotopic discrimination between food and blood and feathers of captive penguins: implications for dietary studies in the wild. Physiol Biochem Zool 78:106–115. doi: 10.1086/425202 PubMedCrossRefGoogle Scholar
  10. Cherel Y, Hobson KA, Weimerskirch H (2005b) Using stable isotopes to study resource acquisition and allocation in procellariiform seabirds. Oecologia 145:533–540. doi: 10.1007/s00442-005-0156-7 PubMedCrossRefGoogle Scholar
  11. Fair J, Whitaker S, Pearson B (2007) Sources of variation in haematocrit in birds. Ibis 149:535–552. doi: 10.1111/j.1474-919X.2007.00680.x CrossRefGoogle Scholar
  12. Fauchald P, Tveraa T (2003) Using first-passage time in the analysis of area-restricted search and habitat selection. Ecology 84:282–288CrossRefGoogle Scholar
  13. Furness RW, Birkhead TR (1984) Seabird colony distributions suggest competition for food supplies during the breeding season. Nature 311:655–656. doi: 10.1038/311655a0 CrossRefGoogle Scholar
  14. Furness RW, Hilton G, Monteiro LR (2000) Influences of coastal habitat characteristics on the distribution of Cory’s Shearwaters Calonectris diomedea in the Azores archipelago. Bird Study 47:257–265. doi: 10.1080/00063650009461185 CrossRefGoogle Scholar
  15. Garthe S, Montevecchi WA, Davoren GK (2011) Inter-annual changes in prey fields trigger different foraging tactics in a large marine predator. Limnol Oceanogr 56:802–812. doi: 10.4319/lo.2011.56.3.0802 CrossRefGoogle Scholar
  16. Granadeiro JP (1993) Variation in measurements of Cory’s shearwater between populations and sexing by discriminant analysis. Ringing Migr 14:103–112. doi: 10.1080/03078698.1993.9674051 CrossRefGoogle Scholar
  17. Granadeiro JP, Bolton M, Silva MC, Nunes M, Furness RW (2000) Responses of breeding Cory’s shearwater Calonectris diomedea to experimental manipulation of chick condition. Behav Ecol 11:274–281. doi: 10.1093/beheco/11.3.274 CrossRefGoogle Scholar
  18. Granadeiro JP, Phillips RA, Brickle P, Catry P (2011) Albatrosses following fishing vessels: how badly hooked are they on an easy meal? PLoS ONE 6:e17467. doi: 10.1371/journal.pone.0017467 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Grémillet D, Dell’Omo G, Ryan PG, Peters G, Ropert-Coudert Y, Weeks SJ (2004) Offshore diplomacy or how seabirds mitigate intra-specific competition: a case study based on GPS tracking of Cape gannets from neighbouring colonies. Mar Ecol Prog Ser 268:265–279. doi: 10.3354/meps268265 CrossRefGoogle Scholar
  20. Hobson KA, Clark RG (1993) Turnover of d13C in cellular and plasma reactions of blood: implications for nondestructive sampling in avian dietary studies. Auk 110:638–641CrossRefGoogle Scholar
  21. Huin N (2002) Foraging distribution of the black-browed albatross, Thalassarche melanophris, breeding in the Falkland Islands. Aquat Conserv Mar Freshw Ecosyst 12:89–99. doi: 10.1002/aqc.479 CrossRefGoogle Scholar
  22. Igual JM, Forero MG, Tavecchia G, Gonzalez-Solis J, Martinez-Abrain A, Hobson KA, Ruiz X, Oro D (2005) Short-term effects of data-loggers on Cory’s shearwater (Calonectris diomedea). Mar Biol 146:619–624. doi: 10.1007/s00227-004-1461-0 CrossRefGoogle Scholar
  23. Lewis S, Sherratt TN, Hamer KC, Wanless S (2001) Evidence of intra-specific competition for food in a pelagic seabird. Nature 412:816–819. doi: 10.1038/35090566 PubMedCrossRefGoogle Scholar
  24. Masello JF, Mundry R, Poisbleau M, Demongin L, Voigt CC, Wikelski M, Quillfeldt P (2010) Diving seabirds share foraging space and time within and among species. Ecosphere 1:1–20. doi: 10.1890/ES10-00103.1 CrossRefGoogle Scholar
  25. Paiva VH, Geraldes P, Ramírez I, Meirinho A, Garthe S, Ramos JA (2010a) Foraging plasticity in a pelagic seabird species along a marine productivity gradient. Mar Ecol Prog Ser 398:259–274. doi: 10.3354/meps08319 CrossRefGoogle Scholar
  26. Paiva VH, Geraldes P, Ramírez I, Garthe S, Ramos JA (2010b) How area restricted search of a pelagic seabird changes while performing a dual foraging strategy. Oikos 119:1423–1434. doi: 10.1111/j.1600-0706.2010.18294.x CrossRefGoogle Scholar
  27. Paiva VH, Geraldes P, Ramírez I, Meirinho A, Garthe S, Ramos JA (2010c) Oceanographic characteristics of areas used by Cory’s shearwaters during short and long foraging trips in the North Atlantic. Mar Biol 157:1385–1399. doi: 10.1007/s00227-010-1417-5 CrossRefGoogle Scholar
  28. Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5:e9672. doi: 10.1371/journal.pone.0009672 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Pedro PI, Ramos JA, Neves VC, Paiva VH (2013) Past and present trophic position and decadal changes in diet of yellow-legged gull in the Azores archipelago, NE Atlantic. Eur J Wildl Res 59:833–845. doi: 10.1007/s10344-013-0737-4 CrossRefGoogle Scholar
  30. Phillips RA, Xavier JC, Croxall JP (2003) Effects of satellite transmitters on albatrosses and petrels. Auk 120:1082–1090. doi: 10.1642/0004-8038 CrossRefGoogle Scholar
  31. Phillips R, Wakefield E, Croxall J, Fukuda A, Higuchi H (2009) Albatross foraging behaviour: no evidence for dual foraging, and limited support for anticipatory regulation of provisioning at South Georgia. Mar Ecol Prog Ser 391:279–292. doi: 10.3354/meps08028 CrossRefGoogle Scholar
  32. Pinaud D (2008) Quantifying search effort of moving animals at several spatial scales using first-passage time analysis: effect of the structure of environment and tracking systems. J Appl Ecol 45:91–99. doi: 10.1111/j.1365-2664.2007.01370.x CrossRefGoogle Scholar
  33. Ramos JA, Granadeiro JP, Phillips RA, Catry P (2009a) Flight morphology and foraging behavior of male and female Cory’s shearwaters. Condor 111:424–432. doi: 10.1525/cond.2009.090008 CrossRefGoogle Scholar
  34. Ramos R, Ramírez F, Sanpera C, Jover L, Xavier R (2009b) Feeding ecology of yellow-legged gulls Larus michahellis in the western Mediterranean: a comparative assessment using conventional and isotopic methods. Mar Ecol Prog Ser 377:289–297. doi: 10.3354/meps07792 CrossRefGoogle Scholar
  35. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  36. Robson BW, Goebel ME, Baker JD, Ream RR, Loughlin TR, Francis RC, Antonelis GA, Costa DP (2004) Separation of foraging habitat among breeding sites of a colonial marine predator, the northern fur seal (Callorhinus ursinus). Can J Zool 82:20–29. doi: 10.1139/Z03-208 CrossRefGoogle Scholar
  37. Vandenabeele SP, Shepard EL, Grogan A, Wilson RP (2012) When three per cent may not be three per cent; device-equipped seabirds experience variable flight constraints. Mar Biol 159:1–14. doi: 10.1007/s00227-011-1784-6 CrossRefGoogle Scholar
  38. Votier SC, Bearhop S, Witt MJ, Inger R, Thompson D, Newton J (2010) Individual responses of seabirds to commercial fisheries revealed using GPS tracking, stable isotopes and vessel monitoring systems. J Appl Ecol 47:487–497. doi: 10.1111/j.1365-2664.2010.01790.x CrossRefGoogle Scholar
  39. Waggitt J, Briffa M, Grecian W, Newton J, Patrick SC, Stauss C, Votier SC (2014) Testing for sub-colony variation in seabird foraging behaviour: ecological and methodological consequences for understanding colonial living. Mar Ecol Prog Ser 498:275–285. doi: 10.3354/meps10628 CrossRefGoogle Scholar
  40. Wakefield E, Phillips R, Matthiopoulos J (2009) Quantifying habitat use and preferences of pelagic seabirds using individual movement data: a review. Mar Ecol Prog Ser 391:165–182. doi: 10.3354/meps08203 CrossRefGoogle Scholar
  41. Wakefield ED, Bodey TW, Bearhop S, Blackburn J, Colhoun K, Davies R, Dwyer RG, Green JA, Grémillet D, Jackson AL, Jessopp MJ, Kane A, Langston RHW, Lescroël A, Murray S, Le Nuz M, Patrick SC, Péron C, Soanes LM, Wanless S, Votier SC, Hamer KC (2013) Space partitioning without territoriality in gannets. Science 341:68–70. doi: 10.1126/science.1236077 PubMedCrossRefGoogle Scholar
  42. Wanless S, Harris MP (1993) Use of mutually exclusive foraging areas by adjacent colonies of blue-eyed shags (Phalacrocorax atriceps) at South Georgia. Colon Waterbirds 16:176–182CrossRefGoogle Scholar
  43. Ward P, Zahavi A (1973) The importance of certain assemblages of birds as “information-centres” for food-finding. Ibis 115:517–534. doi: 10.1111/j.1474-919X.1973.tb01990.x CrossRefGoogle Scholar
  44. Weimerskirch H (2013) Seabirds-individuals in colonies. Science 341:35–36. doi: 10.1126/science.1240316 PubMedCrossRefGoogle Scholar
  45. Weimerskirch H, Pinaud D, Pawlowski F, Bost CA (2007) Does prey capture induce area-restricted search? A fine-scale study using GPS in a marine predator, the wandering albatross. Am Nat 170:734–743. doi: 10.1086/522059 PubMedCrossRefGoogle Scholar
  46. Wiley AE, Welch AJ, Ostrom PH, James HF, Ainley DG, Duvall F, Holmes N, Hu D, Judge S, Penniman J, Swindle KA (2012) Foraging segregation and genetic divergence between geographically proximate colonies of a highly mobile seabird. Oecologia 168:119–130. doi: 10.1007/s00442-011-2085-y PubMedCrossRefGoogle Scholar
  47. Wilson RP (1984) An improved stomach pump for penquins and other seabirds. J Ornithol 55:109–112Google Scholar
  48. Xavier JC, Trathan PN, Croxall JP, Wood AG, Podesta G, Rodhouse PG (2004) Foraging ecology and interactions with fisheries of wandering albatrosses (Diomedea exulans) breeding at South Georgia. Fish Oceanogr 13:324–344. doi: 10.1111/j.1365-2419.2004.00298.x CrossRefGoogle Scholar
  49. Yamamoto T, Takahashi A, Oka N, Iida T, Katsumata N, Sato K, Trathan P (2011) Foraging areas of streaked shearwaters in relation to seasonal changes in the marine environment of the Northwestern Pacific: inter-colony and sex-related differences. Mar Ecol Prog Ser 424:191–204. doi: 10.3354/meps08973 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Filipe R. Ceia
    • 1
    Email author
  • Vitor H. Paiva
    • 1
  • Ricardo S. Ceia
    • 1
  • Sandra Hervías
    • 2
  • Stefan Garthe
    • 3
  • João C. Marques
    • 1
  • Jaime A. Ramos
    • 1
  1. 1.Department of Life Sciences, Marine and Environmental Research Centre (IMAR/CMA)University of CoimbraCoimbraPortugal
  2. 2.SPEA-Portuguese Society for the Study of BirdsBirdLife International PartnerLisboaPortugal
  3. 3.Research and Technology Centre (FTZ)University of KielBüsumGermany

Personalised recommendations