Advertisement

Oecologia

, Volume 176, Issue 3, pp 613–624 | Cite as

Impact of high predation risk on genome-wide hippocampal gene expression in snowshoe hares

  • Sophia G. Lavergne
  • Patrick O. McGowan
  • Charles J. Krebs
  • Rudy Boonstra
Special Topic: Ecophysiological Effects of Predation Risk

Abstract

The population dynamics of snowshoe hares (Lepus americanus) are fundamental to the ecosystem dynamics of Canada’s boreal forest. During the 8- to 11-year population cycle, hare densities can fluctuate up to 40-fold. Predators in this system (lynx, coyotes, great-horned owls) affect population numbers not only through direct mortality but also through sublethal effects. The chronic stress hypothesis posits that high predation risk during the decline severely stresses hares, leading to greater stress responses, heightened ability to mobilize cortisol and energy, and a poorer body condition. These effects may result in, or be mediated by, differential gene expression. We used an oligonucleotide microarray designed for a closely-related species, the European rabbit (Oryctolagus cuniculus), to characterize differences in genome-wide hippocampal RNA transcript abundance in wild hares from the Yukon during peak and decline phases of a single cycle. A total of 106 genes were differentially regulated between phases. Array results were validated with quantitative real-time PCR, and mammalian protein sequence similarity was used to infer gene function. In comparison to hares from the peak, decline phase hares showed increased expression of genes involved in metabolic processes and hormone response, and decreased expression of immune response and blood cell formation genes. We found evidence for predation risk effects on the expression of genes whose putative functions correspond with physiological impacts known to be induced by predation risk in snowshoe hares. This study shows, for the first time, a link between changes in demography and alterations in neural RNA transcript abundance in a natural population.

Keywords

Heterologous microarray Hippocampus Sublethal effects Chronic stress 10-year population cycle 

Notes

Acknowledgments

We thank Wilfred De Vega, Lanna Jin, Pauline Pan, Aya Sasaki, Carl Virtanen, and Robert Williamson for contributions to this project. The Natural Sciences and Engineering Research Council of Canada provided funding for this research to S.G.L., R.B. and C.J.K. We thank the Kluane Lake Research Station and the Arctic Institute of North America for providing research facilities. We declare no financial conflicts of interest.

Supplementary material

442_2014_3053_MOESM1_ESM.xls (66 kb)
Supplementary material 1 (XLS 66 kb)
442_2014_3053_MOESM2_ESM.pdf (73 kb)
Supplementary material 2 (PDF 72 kb)
442_2014_3053_MOESM3_ESM.pdf (54 kb)
Supplementary material 3 (PDF 53 kb)

References

  1. Boonstra R (2013) Reality as the leading cause of stress: rethinking the impact of chronic stress in nature. Funct Ecol 27:11–23. doi: 10.1111/1365-2435.12008 CrossRefGoogle Scholar
  2. Boonstra R, Singleton GR (1993) Population declines in the snowshoe hare and the role of stress. Gen Comp Endocrinol 91:126–143. doi: 10.1006/gcen.1993.1113 PubMedCrossRefGoogle Scholar
  3. Boonstra R, Hik D, Singleton GR, Tinnikov A (1998a) The impact of predator-induced stress on the snowshoe hare cycle. Ecol Monogr 79:371–394. doi: 10.2307/2657244 CrossRefGoogle Scholar
  4. Boonstra R, Krebs CJ, Stenseth NC (1998b) Population cycles in small mammals: the problem of explaining the low phase. Ecology 79:1479–1488. doi: 10.2307/176770 CrossRefGoogle Scholar
  5. Boutin S (1984) Effect of late winter food addition on numbers and movements of snowshoe hares. Oecologia 62:393–400. doi: 10.1007/BF00384273 CrossRefGoogle Scholar
  6. Boutin S, Krebs CJ, Sinclair ARE, Smith JNM (1986) Proximate causes of losses in a snowshoe hare population. Can J Zool 64:606–610. doi: 10.1139/z86-090 CrossRefGoogle Scholar
  7. Breuner CW, Delehanty B, Boonstra R (2013) Evaluating stress in natural populations of verterbrates: total CORT is not good enough. Funct Ecol 27:24–36. doi: 10.1111/1365-2435.12016 CrossRefGoogle Scholar
  8. Brodsky LI, Jacob-Hirsch J, Avivi A, Trakhtenbrot L, Zeligson S, Amariglio N, Paz A, Korol AB, Band M, Rechavi G, Nevo E (2005) Evolutionary regulation of the blind subterranean mole rat, Spalax, revealed by genome-wide gene expression. Proc Natl Acad Sci USA 102:17047–17052. doi: 10.1073/pnas.0505043102 PubMedCrossRefPubMedCentralGoogle Scholar
  9. Buckley BA (2007) Comparative environmental genomics in non-model species: using heterologous hybridization to DNA-based microarrays. J Exp Biol 209:1602–1606. doi: 10.1242/jeb.002402 CrossRefGoogle Scholar
  10. Burton C, Krebs CJ (2003) Influence of relatedness on snowshoe hare spacing behavior. J Mammal 84:1100–1111. doi: 10.1644/BRG-029 CrossRefGoogle Scholar
  11. Calisi RM, Bentley GE (2009) Lab and field experiments: are they the same animal? Horm Behav 56:1–10. doi: 10.1016/j.yhbeh.2009.02.010 PubMedCrossRefGoogle Scholar
  12. Cary JR, Keith LB (1979) Reproductive change in the 10-year cycle of snowshoe hares. Can J Zool 57:375–390. doi: 10.1139/z79-044 CrossRefGoogle Scholar
  13. Chapman RW (2001) EcoGenomics–a consilience for comparative immunology? Dev Comp Immunol 25:549–551. doi: 10.1016/S0145-305X(01)00045-3 PubMedCrossRefGoogle Scholar
  14. Chitty D (1967) The natural selection of self-regulatory behavior in animal populations. Proc Ecol Soc Aust 2:51–78Google Scholar
  15. Clinchy M, Schulkin J, Zanette LY, Sheriff MJ, McGowan PO, Boonstra R (2011) The neurological ecology of fear: insights neuroscientists and ecologists have to offer one another. Front Behav Neurosci 5:21. doi: 10.3389/fnbeh.2011.00021 PubMedCentralGoogle Scholar
  16. Craig DB, Kannan S, Dombkowski AA (2012) Augmented annotation and orthologue analysis for Oryctolagus cuniculus: better Bunny. BMC Bioinform. doi: 10.1186/1471-2105-13-84 Google Scholar
  17. Creel S, Christianson D (2008) Relationship between direct predation and risk effects. Trends Ecol Evol 23:194–201. doi: 10.1016/j.tree.2007.12.004 PubMedCrossRefGoogle Scholar
  18. Deckert M, Lütjen S, Leuker CE, Kwok LY, Strack A, Müller W, Wagner N, Schlüter D (2003) Mice with neonatally induced inactivation of the vascular cell adhesion molecule-1 fail to control the parasite in Toxoplasma encephalitis. Eur J Immunol 33:1418–1428. doi: 10.1002/eji.200322826 PubMedCrossRefGoogle Scholar
  19. deKloet ER, Joëls M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475. doi: 10.1038/nrn1683 CrossRefGoogle Scholar
  20. Eddy SF, Storey KB (2002) Dynamic use of cDNA arrays: heterologous probing for gene discovery and exploration of organismal adaptation to environmental stress. In: Storey KB, Storey JM (eds) Sensing, signaling and cell adaption. Elsevier, Amsterdam, pp 315–325CrossRefGoogle Scholar
  21. Eddy SF, Storey KB (2008) Comparative molecular physiological genomics. In: Martin CC (ed) Environmental genomics. Humana, Totowa, pp 81–110CrossRefGoogle Scholar
  22. Efford MG, Borchers DL, Byrom AE (2009) Density estimation by spatially explicit capture-recapture: likelihood-based methods. In: Thomson DL, Cooch EG, Conroy MJ (eds) Modeling demographic processes in marked populations. Springer, New York, pp 255–269CrossRefGoogle Scholar
  23. Hodges KE, Sinclair ARE (2003) Does predation risk cause snowshoe hares to modify their diets? Can J Zool 81:1973–1985. doi: 10.1139/Z03-192 CrossRefGoogle Scholar
  24. Hodges KE, Krebs CJ, Hik DS, Gillis EA, Doyle CE (2001) Snowshoe hare dynamics. In: Krebs CJ, Boutin S, Boonstra R (eds) Ecosystem dynamics of the boreal forest. The Kluane project. Oxford University Press, New York, pp 141–178Google Scholar
  25. Hodges KE, Boonstra R, Krebs CJ (2006) Overwinter mass loss of snowshoe hares in Yukon: starvation, stress, adaptation or artefact? J Anim Ecol 75:1–13. doi: 10.1111/j.1365-2656.2005.01018.x PubMedCrossRefGoogle Scholar
  26. Huang DW, Sherman BT, Lempicki RA (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 44:44–57. doi: 10.1038/nprot.2008.211 CrossRefGoogle Scholar
  27. Joo Y, Choi KM, Lee YH, Kim G, Lee DH, Roh GS, Kang SS, Cho GJ, Choi WS, Kim HJ (2009) Chronic immobilization stress induces anxiety- and depression-like behaviors and decreases transthyretin in the mouse cortex. Neurosci Lett 461:121–125. doi: 10.1016/j.neulet.2009.06.025 PubMedCrossRefGoogle Scholar
  28. Kassahn KS (2008) Microarrays for comparative and ecological genomics: beyond single–species applications of array technologies. J Fish Biol 72:2407–2434. doi: 10.1111/j.1095-8649.2008.01890.x CrossRefGoogle Scholar
  29. Kohda K, Jinde S, Iwamoto K, Bundo M, Kato N, Kato T (2006) Maternal separation stress drastically decreases expression of transthyretin in the brains of adult rat offspring. Int J Neurophyschopharmacol 9:201–208. doi: 10.1017/S1461145705005857 CrossRefGoogle Scholar
  30. Krebs CJ (2011) Of lemmings and snowshoe hares: the ecology of northern Canada. Proc R Soc Lond B 278:481–489. doi: 10.1098/rspb.2010.1992 CrossRefGoogle Scholar
  31. Krebs CJ, Gilbert S, Boutin S, Sinclair A, Smith JNM (1986) Population biology of snowshoe hares. I. Demography of food-supplemented populations in the southern Yukon. 1976–84. J Anim Ecol 55:963–982. doi: 10.2307/4427 CrossRefGoogle Scholar
  32. Krebs CJ, Boutin S, Boonstra R, Sinclair A, Smith JNM, Dale MRT, Martine K, Turkington R (1995) Impact of food and predation on the snowshoe hare cycle. Science 269:1112–1115. doi: 10.1126/science.269.5227.1112 PubMedCrossRefGoogle Scholar
  33. Krebs CJ, Boutin S, Boonstra R (2001) Ecosystem dynamics of the boreal forest. The Kluane Project. Oxford University Press, New York, pp 141–178Google Scholar
  34. Krebs CJ, Boonstra R, Boutin S, Sinclair ARE, Smith JNM, Gilbert S, Martin K, O’Donoghue M, Turkington R (2014) Trophic dynamics of the boreal forests of the Kluane region. Arctic KLRS 50th Anniversary Issue doi:  10.14430/arctic.2012.12-109
  35. Love OP, Williams TD (2008) The adaptive value of stress-induced phenotypes: effects of maternally derived corticosterone on sex-biased investment, cost of reproduction, and maternal fitness. Am Nat 172:135–149. doi: 10.1086/590959 CrossRefGoogle Scholar
  36. MacColl ADC (2011) The ecological causes of evolution. Trends Ecol Evol 26:514–522. doi: 10.1016/j.tree.2011.06.009 PubMedCrossRefGoogle Scholar
  37. Martinho A, Goncalves I, Costa M, Santos R (2012) Stress and glucocorticoids increase transthyretin expression in rat choroid plexus via mineralocorticoid and glucocorticoid receptors. J Mol Neurosci 48:1–13. doi: 10.1007/s12031-012-9715-7 PubMedCrossRefGoogle Scholar
  38. Matthee CA, Jansen vanVuuren B, Bell D, Robinson TJ (2004) A molecular supermatrix of the rabbits and hares (Leporidae) allows for the identification of five intercontinental exchanges during the Miocene. Syst Biol 53:433–447. doi: 10.1080/10635150490445715 PubMedCrossRefGoogle Scholar
  39. Matthews SG, Owen D, Kalabis G, Banjanin S, Setiawan EB, Dunn EA, Andrews MH (2004) Fetal glucocorticoid exposure and hypothalamic-pituitary-adrenal (HPA) function after birth. Endocr Res 30:827–836. doi: 10.1081/ERC-200044091 PubMedCrossRefGoogle Scholar
  40. McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87:873–904. doi: 10.1152/physrev.00041.2006 PubMedCrossRefGoogle Scholar
  41. McGowan PO, Suderman M, Sasaki A, Huang TCT, Hallett M, Meaney MJ, Szyf M (2011) Broad epigenetic signatures of maternal care in the brain of adult rats. PLoS ONE 6:e14739. doi: 10.1371/journal.pone.0014739 PubMedCrossRefPubMedCentralGoogle Scholar
  42. Ou R, Zhang M, Huang L, Flavell RA, Koni PA, Moskophidis D (2008) Regulation of immune response and inflammatory reactions against viral infection by VCAM-1. J Virol 82:2952–2965. doi: 10.1128/JVI.02191-07 PubMedCrossRefPubMedCentralGoogle Scholar
  43. Preisser EL, Bolnick DI, Benard MF (2005) Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecol Soc Am 86:501–509. doi: 10.1890/04-0719 Google Scholar
  44. Ptitsyn A, Schlater A, Kanatous S (2010) Transformation of metabolism with age and lifestyle in Antarctic seals: a case study of systems biology approach to cross-species microarray experiment. BMC Syst Biol 4:133. doi: 10.1186/1752-0509-4-133 PubMedCrossRefPubMedCentralGoogle Scholar
  45. Rai G, Ray S, Milton J, Yang J, Ren P, Lempicki R, Mage RG (2010) Gene expression profiles in a rabbit model of systemic Lupus erythematosus autoantibody production. J Immunol 185:4446–4456. doi: 10.4049/jimmunol.1001254 PubMedCrossRefPubMedCentralGoogle Scholar
  46. Renn SC, Aubin-Horth N, Hofmann HA (2004) Biologically meaningful expression profiling across species using heterologous hybridization to a cDNA microarray. BMC Genom. doi: 10.1186/1471-2164-5-42 Google Scholar
  47. Rinaudo JAS, Gerin JL (2004) Cross-species hybridization: characterization of gene expression in woodchuck liver using human membrane arrays. J Med Virol 74:300–313. doi: 10.1002/jmv.20186 PubMedCrossRefGoogle Scholar
  48. Saetre P, Lindberg J, Leonard JA, Olsson K, Pettersson U, Ellegren H, Bergström TF, Vilà C, Jazin E (2004) From wild wolf to domestic dog: gene expression changes in the brain. Mol Brain Res 126:198–206. doi: 10.1016/j.molbrainres.2004.05.003 PubMedCrossRefGoogle Scholar
  49. Sangar V, Blankenberg DJ, Altman N, Lesk AM (2007) Quantitative sequence-function relationships in proteins based on gene ontology. BMC Bioinform 8:294. doi: 10.1186/1471-2105-8-294 CrossRefGoogle Scholar
  50. Sapolsky RM (2003) Stress and plasticity in the limbic system. Neurochem Res 28:1735–1742. doi: 10.1023/A:1026021307833 PubMedCrossRefGoogle Scholar
  51. Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89. doi: 10.1210/edrv.21.1.0389 PubMedGoogle Scholar
  52. Sasaki H, Yoshioka N, Takagi Y, Sakaki Y (1985) Structure of the chromosomal gene for human serum prealbumin. Gene 37:191–197. doi: 10.1016/0378-1119(85)90272-0 PubMedCrossRefGoogle Scholar
  53. Sasaki A, De Vega WC, St-Cyr S, Pan P, McGowan PO (2013) Perinatal high fat diet alters glucocorticoid signaling and anxiety behavior in adulthood. Neuroscience 240:1–12. doi: 10.1016/j.neuroscience.2013.02.044 PubMedCrossRefGoogle Scholar
  54. Schreiber G, Richardson SJ (1997) The evolution of gene expression, structure and function of transthyretin. Comp Biochem Physiol 116:137–160. doi: 10.1016/S0305-0491(96)00212-X CrossRefGoogle Scholar
  55. Seckl J (2004) Prenatal glucocorticoids and long-term programming. Eur J Endocrinol 151:49–62. doi: 10.1530/eje.0.151U049 CrossRefGoogle Scholar
  56. Seol D, Choe H, Zheng H, Jang K, Ramakrishnan PS, Lim T-H, Martin JA (2011) Selection of reference genes for normalization of quantitative real-time PCR in organ culture of the rat and rabbit intervertebral disc. BMC Res Notes 4:162. doi: 10.1186/1756-0500-4-162 PubMedCrossRefPubMedCentralGoogle Scholar
  57. Sheriff MJ, Love OP (2013) Determining the adaptive potential of maternal stress. Ecol Lett 16:271–280. doi: 10.1111/ele.12042 PubMedCrossRefGoogle Scholar
  58. Sheriff MJ, Krebs CJ, Boonstra R (2009) The sensitive hare: sublethal effects of predator stress on reproduction in snowshoe hares. J Anim Ecol 78:1249–1258. doi: 10.1111/j.1365-2656.2009.01552.x PubMedCrossRefGoogle Scholar
  59. Sheriff MJ, Krebs CJ, Boonstra R (2010) The ghosts of predators past: population cycles and the role of maternal programming under fluctuating predation risk. Ecology 91:2983–2994. doi: 10.1890/09-1108.1 PubMedCrossRefGoogle Scholar
  60. Sheriff MJ, Krebs CJ, Boonstra R (2011) From process to pattern: how fluctuating predation risk impacts the stress axis of snowshoe hares during the 10-year cycle. Oecologia 166:593–605. doi: 10.1007/s00442-011-1907-2 PubMedCrossRefGoogle Scholar
  61. Sih A, Crowley P, McPeek M, Petranka J, Strohmeier K (1985) Predation, competition, and prey communities: a review of field experiments. Annu Rev Ecol Syst 16:269–311. doi: 10.1146/annurev.es.16.110185.001413 CrossRefGoogle Scholar
  62. Sinclair ARE, Chitty D, Stefan CI, Krebs CJ (2003) Mammal population cycles: evidence for intrinsic differences during snowshoe hare cycles. Can J Zool 81:216–220. doi: 10.1139/z03-006 CrossRefGoogle Scholar
  63. Stefan CI, Krebs CJ (2001) Reproductive changes in a cyclic population of snowshoe hares. Can J Zool 79:2101–2108. doi: 10.1139/z01-177 CrossRefGoogle Scholar
  64. Storey KB (2004) Strategies for exploration of freeze responsive gene expression: advances in vertebrate freeze tolerance. Cryobiology 48:134–145. doi: 10.1016/j.cryobiol.2003.10.008 PubMedCrossRefGoogle Scholar
  65. Straus DS, Marten NW, Hayden JM, Burke EJ (1994) Protein restriction specifically decreases the abundance of serum albumin and transthyretin nuclear transcripts in rat liver. J Nutr 124:1041–1051PubMedGoogle Scholar
  66. Suderman M, McGowan PO, Sasaki A, Huang TCT, Hallett MT, Meaney MJ, Turecki G, Szyf M (2012) Conserved epigenetic sensitivity to early life experience in the rat and human hippocampus. Proc Natl Acad Sci USA 109:17266–17272. doi: 10.1073/pnas.1121260109 PubMedCrossRefPubMedCentralGoogle Scholar
  67. Szyf M, Weaver ICG, Champagne FA, Diorio J, Meaney MJ (2005) Maternal programming of steroid receptor expression and phenotype through DNA methylation in the rat. Front Neuroendocrinol 26:139–162. doi: 10.1016/j.yfrne.2005.10.002 PubMedCrossRefGoogle Scholar
  68. Travers SE, Smith MD, Bai J, Hulbert SH, Leach JE, Schnable PS, Knapp AK, Milliken GA, Fay PA, Saleh A, Garrett KA (2007) Ecological genomics: making the leap from model systems in the lab to native populations in the field. Front Ecol Environ 5:19–24. doi:10.1890/1540-9295(2007)5[19:EGMTLF]2.0.CO;2CrossRefGoogle Scholar
  69. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1–12. doi: 10.1186/gb-2002-3-7-research0034 CrossRefGoogle Scholar
  70. Wakasugi S, Maeda S, Shimada K (1986) Structure and expression of the mouse prealbumin gene. J Biochem 100:49–58PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sophia G. Lavergne
    • 1
  • Patrick O. McGowan
    • 1
  • Charles J. Krebs
    • 2
  • Rudy Boonstra
    • 1
  1. 1.Department of Biological Sciences, Centre for Environmental Epigenetics and DevelopmentUniversity of Toronto ScarboroughTorontoCanada
  2. 2.Department of ZoologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations