Advertisement

Oecologia

, Volume 176, Issue 3, pp 739–749 | Cite as

Influence of shade tolerance and development stage on the allometry of ten temperate tree species

  • Tony FranceschiniEmail author
  • Robert Schneider
Physiological ecology - Original research

Abstract

Allometry studies the change in scale between two dimensions of an organism. The metabolic theory of ecology predicts invariant allometric scaling exponents, while empirical studies evidenced inter- and intra-specific variations. This work aimed at identifying the sources of variations of the allometric exponents at both inter- and intra-specific levels using stem analysis from 9,363 trees for ten Eastern Canada species with a large shade-tolerance gradient. Specifically, the yearly allometric exponents, α v,DBH [volume (v) and diameter at breast height (DBH)], β v,h [v and height (h)], and γ h,DBH (h and DBH) were modelled as a function of tree age for each species. α v,DBH, and γ h,DBH increased with tree age and then reached a plateau ranging from 2.45 to 3.12 for α v,DBH, and 0.874–1.48 for γ h,DBH. Pine species presented a local maximum. No effect of tree age on β v,h was found for conifers, while it increased until a plateau ranging from 3.71 to 5.16 for broadleaves. The influence of shade tolerance on the growth trajectories was then explored. In the juvenile stage, α v,DBH, and γ h,DBH increased with shade tolerance while β v,h was shade-tolerance independent. In the mature stage, β v,h increased with shade tolerance, whereas γ h,DBH decreased and α v,DBH was shade-tolerance independent. The interaction between development stage and shade tolerance for allometric exponents demonstrates the importance of the changing functional requirements of trees for resource allocation at both the inter- and intra-specific level. These results indicate the need to also integrate specific functional traits, growth strategies and allocation, in allometric theoretical frameworks.

Keywords

Functional requirements Growth allocation Life strategies Allometric theory Stem analysis 

Notes

Acknowledgments

The authors would like to thank the Fonds de recherche du Québec–Nature et technologies, the Ministère des Forêts, de la Faune et des Parcs of the province of Quebec (MFFP), the Natural Sciences and Engineering Research Council of Canada for funding and the MFFP for access to the data. The authors also thank Jean-Pierre Saucier, the anonymous reviewer and the associate editor for their helpful comments and suggestions on an earlier version of the manuscript.

References

  1. Aiba M, Nakashizuka T (2009) Architectural differences associated with adult stature and wood density in 30 temperate tree species. Funct Ecol 23:265–273. doi: 10.1111/j.1365-2435.2008.01500.x CrossRefGoogle Scholar
  2. Ameztegui A, Coll L (2011) Tree dynamics and co-existence in the montane–sub-alpine ecotone: the role of different light-induced strategies. J Veg Sci 22:1049–1061. doi: 10.1111/j.1654-1103.2011.01316.x CrossRefGoogle Scholar
  3. Anderson-Teixeira KJ, Miller AD, Mohan JE et al (2013) Altered dynamics of forest recovery under a changing climate. Glob Chang Biol 19(7):2001–2021PubMedCrossRefGoogle Scholar
  4. Barthelemy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99:375–407PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bazzaz FA (1979) The physiological ecology of plant succession. Annu Rev Ecol Syst 10:351–371. doi: 10.2307/2096796 CrossRefGoogle Scholar
  6. Bazzaz FA, Carlson RW, Harper JL (1979) Contribution to reproductive effort by photosynthesis of flowers and fruits. Nature 279:554–555. doi: 10.1038/279554a0 CrossRefGoogle Scholar
  7. Bertram JEA (1989) Size-dependent differential scaling in branches: the mechanical design of trees revisited. Trees 3:241–253. doi: 10.1007/BF00225358 CrossRefGoogle Scholar
  8. Brown JH, Gillooly JF, Allen AP et al (2004) Toward a metabolic thoery of ecology. Ecology 85:1771–1789. doi: 10.1890/03-9000 CrossRefGoogle Scholar
  9. Canham CD (1988) Growth and canopy architecture of shade-tolerant trees: response to canopy gaps. Ecology 69:786–795. doi: 10.2307/1941027 CrossRefGoogle Scholar
  10. Carmean WH (1972) Site index curves for upland oaks in the Central States. For Sci 18:109–120Google Scholar
  11. Charru M, Seynave I, Morneau F et al (2012) Significant differences and curvilinearity in the self-thinning relationships of 11 temperate tree species assessed from forest inventory data. Ann For Sci 69:195–205. doi: 10.1007/s13595-011-0149-0 CrossRefGoogle Scholar
  12. Chave J, Coomes D, Jansen S et al (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366. doi: 10.1111/j.1461-0248.2009.01285.x PubMedCrossRefGoogle Scholar
  13. Deng J-M, Li T, Wang G-X et al (2008) Trade-offs between the metabolic rate and population density of plants. PLoS ONE 3:e1799. doi: 10.1371/journal.pone.0001799 PubMedCrossRefPubMedCentralGoogle Scholar
  14. Ducey MJ (2012) Evergreenness and wood density predict height–diameter scaling in trees of the northeastern United States. For Ecol Manage 279:21–26. doi: 10.1016/j.foreco.2012.04.034 CrossRefGoogle Scholar
  15. Duursma RA, Mäkelä A, Reid DEB et al (2010) Self-shading affects allometric scaling in trees. Funct Ecol 24:723–730. doi: 10.1111/j.1365-2435.2010.01690.x CrossRefGoogle Scholar
  16. Enquist BJ, Kerkhoff AJ, Stark SC et al (2007) A general integrative model for scaling plant growth, carbon flux, and functional trait spectra. Nature 449:218–222. doi: 10.1038/nature06061 PubMedCrossRefGoogle Scholar
  17. Enquist BJ, West GB, Brown JH (2009) Extensions and evaluations of a general quantitative theory of forest structure and dynamics. PNAS 106:7046–7051. doi: 10.1073/pnas.0812303106 PubMedCrossRefPubMedCentralGoogle Scholar
  18. Genet A, Wernsdörfer H, Jonard M et al (2011) Ontogeny partly explains the apparent heterogeneity of published biomass equations for Fagus sylvatica in Central Europe. For Ecol Manage 261:1188–1202. doi: 10.1016/j.foreco.2010.12.034 CrossRefGoogle Scholar
  19. Gillooly JF, Brown JH, West GB et al (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251. doi: 10.1126/science.1061967 PubMedCrossRefGoogle Scholar
  20. Givnish T (1988) Adaptation to sun and shade: a whole-plant perspective. Funct Plant Biol 15:63–92Google Scholar
  21. Hallé F, Oldeman RAA, Tomlinson PB (1978) Tropical trees and forests: an architectural analysis. Springer, BerlinCrossRefGoogle Scholar
  22. Henry HAL, Aarssen LW (1997) On the relationship between shade tolerance and shade avoidance strategies in woodland plants. Oikos 80:575–582. doi: 10.2307/3546632 CrossRefGoogle Scholar
  23. Henry HAL, Aarssen LW (1999) The interpretation of stem diameter–height allometry in trees: biomechanical constraints, neighbour effects, or biased regressions? Ecol Lett 2:89–97. doi: 10.1046/j.1461-0248.1999.22054.x CrossRefGoogle Scholar
  24. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–78Google Scholar
  25. Humbert L, Gagnon D, Kneeshaw D, Messier C (2007) A shade tolerance index for common understory species of northeastern North America. Ecol Indic 7:195–207. doi: 10.1016/j.ecolind.2005.12.002 CrossRefGoogle Scholar
  26. King DA (1990) The adaptive significance of tree height. Am Nat 135:809–828. doi: 10.2307/2462315 CrossRefGoogle Scholar
  27. Lachenbruch B, Moore JR, Evans R (2011) Radial variation in wood structure and function in woody plants, and hypotheses for its occurrence. In: Meinzer FC, Lachenbruch B, Dawson TE (eds) Size- and age-related changes in tree structure and function. Springer, Dordrecht, pp 121–164CrossRefGoogle Scholar
  28. Lambert MC, Ung CH, Raulier F (2005) Canadian national tree aboveground biomass equations. Can J For Res 35:1996–2018. doi: 10.1139/X05-112 CrossRefGoogle Scholar
  29. Lilles EB, Astrup R (2012) Multiple resource limitation and ontogeny combined: a growth rate comparison of three co-occurring conifers. Can J For Res 42:99–110. doi: 10.1139/x11-163 CrossRefGoogle Scholar
  30. Lin Y, Berger U, Grimm V, Ji Q-R (2012) Differences between symmetric and asymmetric facilitation matter: exploring the interplay between modes of positive and negative plant interactions. J Ecol 100:1482–1491CrossRefGoogle Scholar
  31. Lin Y, Berger U, Grimm V et al (2013) Plant interactions alter the predictions of metabolic scaling theory. PLoS ONE 8:e57612. doi: 10.1371/journal.pone.0057612 PubMedCrossRefPubMedCentralGoogle Scholar
  32. Lines ER, Zavala MA, Purves DW, Coomes DA (2012) Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition. Glob Ecol Biogeogr 21:1017–1028. doi: 10.1111/j.1466-8238.2011.00746.x CrossRefGoogle Scholar
  33. Loetsch F, Zöhrer F, Haller KE (1973) Forest inventory. B.L.V., MünichGoogle Scholar
  34. Maestre FT, Callaway RM, Valladares F, Lortie CJ (2009) Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J Ecol 97:199–205. doi: 10.1111/j.1365-2745.2008.01476.x CrossRefGoogle Scholar
  35. Millet J (2012) L’architecture des arbres des régions tempérées. Multimondes, Sainte-Foy, QCGoogle Scholar
  36. Monserud RA (1986) Time-series analyses of tree-ring chronologies. For Sci 32:349–372Google Scholar
  37. MRNF (2009) Normes d’inventaire forestier. Analyse des tiges. Sélection, récolte et mesure en laboratoire. Direction des inventaires forestiers, Ministère des Ressources naturelles et de la Faune du Québec, QuébecGoogle Scholar
  38. Newberry JD (1991) A note on Carmean’s estimate of height from stem analysis data. For Sci 37:368–369Google Scholar
  39. Niklas KJ (1999) Changes in the factor of safety within the superstructure of a dicot tree. Am J Bot 86:688–696PubMedCrossRefGoogle Scholar
  40. Niklas KJ (2004) Plant allometry: is there a grand unifying theory? Biol Rev 79:871–889. doi: 10.1017/S1464793104006499 PubMedCrossRefGoogle Scholar
  41. Obeso JR (2002) The costs of reproduction in plants. New Phytol 155:321–348. doi: 10.1046/j.1469-8137.2002.00477.x CrossRefGoogle Scholar
  42. Peichl M, Arain MA (2007) Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests. For Ecol Manage 253:68–80. doi: 10.1016/j.foreco.2007.07.003 CrossRefGoogle Scholar
  43. Pilli R, Anfodillo T, Carrer M (2006) Towards a functional and simplified allometry for estimating forest biomass. For Ecol Manage 237:583–593. doi: 10.1016/j.foreco.2006.10.004 CrossRefGoogle Scholar
  44. Pinheiro J, Bates D, DebRoy S (2007) Linear and nonlinear mixed effects models. R package version 3:57Google Scholar
  45. Pretzsch H, Dieler J (2012) Evidence of variant intra- and interspecific scaling of tree crown structure and relevance for allometric theory. Oecologia 169:637–649. doi: 10.1007/s00442-011-2240-5 PubMedCrossRefPubMedCentralGoogle Scholar
  46. Pretzsch H, Daubert E, Biber P (2012) Species-specific and ontogeny-related stem allometry of European forest trees: evidence from extensive stem analyses. For Sci. doi: 10.5849/forsci.11-102 Google Scholar
  47. Price CA, Weitz JS, Savage VM et al (2012) Testing the metabolic theory of ecology. Ecol Lett 15:1465–1474. doi: 10.1111/j.1461-0248.2012.01860.x PubMedCrossRefGoogle Scholar
  48. R Development Core Team (2011)Google Scholar
  49. Reich PB, Wright IJ, Cavender-Bares J et al. (2003) The evolution of plant functional variation: traits, spectra, and strategies. Int J Plant Sci 164:S143–S164. doi: 10.1086/374368 CrossRefGoogle Scholar
  50. Ryan MG, Yoder BJ (1997) Hydraulic limits to tree height and tree growth. Bioscience 47:235–242. doi: 10.2307/1313077 CrossRefGoogle Scholar
  51. Schneider R, Fortin M, Saucier J-P (2013) Équations de défilement en forêt naturelle pour les principales essences commerciales du Québec. Direction de la recherche forestièreGoogle Scholar
  52. Schwinning S, Weiner J (1998) Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia 113:447–455. doi: 10.1007/s004420050397 CrossRefGoogle Scholar
  53. Thomas SC (2011) Age-related changes in tree growth and functional biology: the role of reproduction. In: Meinzer FC, Lachenbruch B, Dawson TE (eds) Size- and age-related changes in tree structure and function. Springer, Dordrecht, pp 33–64CrossRefGoogle Scholar
  54. Valladares F (2003) Light heterogeneity and plants: from ecophysiology to species coexistence and biodiversity. In: Esser K, Lüttge U, Beyschlag W, Hellwig F (eds) Progress in botany. Springer, Berlin Heidelberg New York, pp 439–471CrossRefGoogle Scholar
  55. Valladares F, Niinemets U (2008) Shade tolerance, a key plant feature of complex nature and consequences. Annu Rev Ecol Evol Syst Annu Rev 39:237–257Google Scholar
  56. Violle C, Navas M-L, Vile D et al (2007) Let the concept of trait be functional! Oikos 116:882–892. doi: 10.1111/j.0030-1299.2007.15559.x CrossRefGoogle Scholar
  57. Walters MB, Reich PB (2000) Seed size, nitrogen supply, and growth rate affect tree seedling survival in deep shade. Ecology 81:1887–1901. doi:10.1890/0012-9658(2000)081[1887:SSNSAG]2.0.CO;2Google Scholar
  58. Watt MS, Kirschbaum MUF (2011) Moving beyond simple linear allometric relationships between tree height and diameter. Ecol Model 222:3910–3916. doi: 10.1016/j.ecolmodel.2011.10.011 CrossRefGoogle Scholar
  59. West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126. doi: 10.1126/science.276.5309.122 PubMedCrossRefGoogle Scholar
  60. West GB, Brown JH, Enquist BJ (1999) The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284:1677–1679. doi: 10.1126/science.284.5420.1677 PubMedCrossRefGoogle Scholar
  61. West GB, Enquist BJ, Brown JH (2009) A general quantitative theory of forest structure and dynamics. PNAS 106:7040–7045. doi: 10.1073/pnas.0812294106 PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Département de Biologie, Chimie et Géographie, Chaire de Recherche sur la Forêt HabitéeUniversité du Québec à Rimouski (UQAR)RimouskiCanada

Personalised recommendations