, Volume 176, Issue 3, pp 771–779 | Cite as

Does social status within a dominance hierarchy mediate individual growth, residency and relocation?

  • Abbas Akbaripasand
  • Martin Krkosek
  • P. Mark Lokman
  • Gerard P. Closs
Population ecology - Original research


The availability of food, and hence energy, is known to influence the abundance, habitat choice and growth of individuals. In contrast, there is a paucity of knowledge on how the interaction of energy supply and social status determines patterns of residency and movement. This study tests whether the presence of conspecifics and an individual’s social status in relation to food supply influence the fitness and movement of a drift-feeding fish (Galaxias fasciatus). Using an information-theoretic approach (AIC), our analysis indicated that the most parsimonious model of fish movement among pools was one that included food supply, social rank and fish relative growth rate. Our results indicated that subordinate fish relocated more frequently compared to dominant fish, most likely as a consequence of intra-specific competition that limited the access of these smaller fish to resources and constrained their growth. Our results suggest that energy constraints may force individuals to explore new habitats in an effort to find more energetically profitable patches. We conclude that intra-specific competition mediated through the social hierarchy amongst closely interacting individuals plays a key role in determining individual growth, residency and relocation.


Dominance hierarchy Freshwater fish Individual fitness Interference competition Movement 



Many thanks to Imelda Velasquez, Hadi Pourbagher, Francis Magbanua and Amir Hamidian for their assistance with field data collection. We thank Nicky McHugh and Kim Garrett for their support in the lab and field and also Alistair Senior, Katharina Lange and Manna Warburton for their analytical advice. We are grateful to Dr. L.A. Barmuta from the University of Tasmania and to two anonymous reviewers for their invaluable comments on the manuscript. Funding was provided by the Department of Zoology, University of Otago. All experiments comply with current New Zealand laws.


  1. Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Caski F (eds) Second international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281Google Scholar
  2. Akbaripasand A (2012) Habitat use, growth and movement in relation to bioenergetics of drift-feeding stream fish. PhD dissertation, University of Otago, DunedinGoogle Scholar
  3. Akbaripasand A, Nichol EC, Lokman PM, Closs GP (2011) Microhabitat use of a native New Zealand galaxiid fish, Galaxias fasciatus. NZ J Mar Freshw Res 45:135–144. doi: 10.1080/00288330.2010.544044 CrossRefGoogle Scholar
  4. Akbaripasand A, Krkosek M, Lokman PM, Closs GP (2014) Can drifting invertebrates meet the energy requirements of drift-feeding fish? A case study on Galaxias fasciatus. Freshw Sci. doi: 10.1086/676957 Google Scholar
  5. Alanärä A, Burns MD, Metcalfe NB (2001) Intraspecific resource partitioning in brown trout: the temporal distribution of foraging is determined by social rank. J Anim Ecol 70:980–986. doi: 10.1046/j.0021-8790.2001.00550.x CrossRefGoogle Scholar
  6. Bachman RA (1984) Foraging behavior of free-ranging wild and hatchery brown trout in a stream. Trans Am Fish Soc 113:1–32. doi: 10.1577/1548-8659(1984) CrossRefGoogle Scholar
  7. Bartoń K (2013) MuMIn: Multi-model inference. R package version 1.9.5. Available at: http://CRAN.R-project.org/package=MuMIn
  8. Bates D, Maechler M, Bolker B, Walker S (2013) lme4: Linear mixed-effects models using Eigen and S4 classes. R package version 1.0-5. Available at: http://CRAN.R-project.org/package=lme4
  9. Bennetts RE, Kitchens WM (2000) Factors influencing movement probabilities of a nomadic food specialist: proximate foraging benefits or ultimate gains from exploration? Oikos 91:459–467. doi: 10.1034/j.1600-0706.2000.910306.x CrossRefGoogle Scholar
  10. Biro PA, Post JR, Parkinson EA (2003) From individuals to populations: prey fish risk-taking mediates mortality in whole-system experiments. Ecology 84:2419–2431. doi: 10.1890/02-0416 CrossRefGoogle Scholar
  11. Boss SM, Richardson JS (2002) Effects of food and cover on the growth, survival, and movement of cutthroat trout (Oncorhynchus clarki) in coastal streams. Can J Fish Aquat Sci 59:1044–1053. doi: 10.1139/f02-079 CrossRefGoogle Scholar
  12. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  13. Crampton LH, Longland WS, Murphy DD, Sedinger JS (2011) Food abundance determines distribution and density of a frugivorous bird across seasons. Oikos 120:65–76. doi: 10.1111/j.1600-0706.2010.18624.x CrossRefGoogle Scholar
  14. David BO, Stoffels RJ (2003) Spatial organisation and behavioural interaction of giant kokopu (Galaxias argenteus) in two stream pools differing in fish density. N Z J Mar Freshw Res 37:315–322. doi: 10.1080/00288330.2003.9517169 CrossRefGoogle Scholar
  15. David BO, Closs GP, Crow SK, Hansen EA (2007) Is diel activity determined by social rank in a drift-feeding stream fish dominance hierarchy? Anim Behav 74:259–263. doi: 10.1016/j.anbehav.2006.08.015 CrossRefGoogle Scholar
  16. Dill LM, Fraser AHG (1984) Risk of predation and the feeding behavior of juvenile coho salmon (Oncorhynchus kisutch). Behav Ecol Sociobiol 16:65–71. doi: 10.1007/BF00293105 CrossRefGoogle Scholar
  17. Fausch KD (1984) Profitable stream positions for salmonids-relating specific growth-rate to net energy gain. Can J Zool 62:441–451. doi: 10.1139/z84-067 CrossRefGoogle Scholar
  18. Finstad AG, Armstrong JD, Nislow KH (2011) Freshwater habitat requirements of Atlantic salmon. In: Aas Ø, Einum S, Klemetsen A, Skurdal J (eds) Atlantic salmon ecology, 1st edn. Wiley, New York, pp 67–88Google Scholar
  19. Gelman A, Su Y-S (2013) arm: data analysis using regression and multilevel/hierarchical models. R package version 1.6-10. Available at: http://CRAN.R-project.org/package=arm
  20. Gowan C, Fausch KD (2002) Why do foraging stream salmonids move during summer? Environ Biol Fish 64:139–153. doi: 10.1023/A:1016010723609 CrossRefGoogle Scholar
  21. Grobler JMB, Wood CM (2013) The physiology of rainbow trout in social hierarchies: two ways of looking at the same data. J Comp Physiol B 183:787–799. doi: 10.1007/s00360-013-0752-5 CrossRefPubMedGoogle Scholar
  22. Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711. doi: 10.1111/j.1420-9101.2010.02210.x CrossRefPubMedGoogle Scholar
  23. Halstead MDB (1994) Detection and location of prey by the New Zealand freshwater galaxiid, Galaxias fasciatus (Pisces: Salmoniformes). Master thesis, The University of Auckland, AucklandGoogle Scholar
  24. Hansen EA, Closs GP (2005) Diel activity and home range size in relation to food supply in a drift-feeding stream fish. Behav Ecol 16:640–648. doi: 10.1093/beheco/ari036 CrossRefGoogle Scholar
  25. Hansen EA, Closs GP (2009) Long-term growth and movement in relation to food supply and social status in a stream fish. Behav Ecol 20:616–623. doi: 10.1093/beheco/arp039 CrossRefGoogle Scholar
  26. Hasegawa K, Yamamoto S (2010) The effect of flow regime on the occurrence of interference and exploitative competition in a salmonid species, white-spotted char (Salvelinus leucomaenis). Can J Fish Aquat Sci 67:1776–1781. doi: 10.1139/f10-100 CrossRefGoogle Scholar
  27. Höjesjö J, Økland F, Sundström LF, Pettersson J, Johnsson JI (2007) Movement and home range in relation to dominance; a telemetry study on brown trout Salmo trutta. J Fish Biol 70:257–268. doi: 10.1111/j.1095-8649.2006.01299.x CrossRefGoogle Scholar
  28. Hopkins CL (1979a) Age-related growth characteristics of Galaxias fasciatus (Salmoniformes: Galaxiidae). N Z J Mar Freshw Res 13:39–46. doi: 10.1080/00288330.1979.9515779 CrossRefGoogle Scholar
  29. Hopkins CL (1979b) Reproduction in Galaxias fasciatus Gray (Salmoniformes: Galaxiidae). N Z J Mar Freshw Res 13:225–230. doi: 10.1080/00288330.1979.9515797 CrossRefGoogle Scholar
  30. Hughes NF (1992) Ranking of feeding positions by drift-feeding Arctic grayling (Thymallus arcticus) in dominance hierarchies. Can J Fish Aquat Sci 49:1994–1998. doi: 10.1139/f92-222 CrossRefGoogle Scholar
  31. Hughes NF (1998) A model of habitat selection by drift-feeding stream salmonids at different scales. Ecology 79:281–294. doi: 10.1890/0012-9658(1998) CrossRefGoogle Scholar
  32. Jonsson B, Jonsson N (2011) Ecology of Atlantic salmon and brown trout: habitat as a template for life histories. Springer, Dordrecht. doi: 10.1007/978-94-007-1189-1
  33. Kramer DL, Chapman MR (1999) Implications of fish home range size and relocation for marine reserve function. Environ Biol Fish 55:65–79. doi: 10.1023/A:1007481206399 CrossRefGoogle Scholar
  34. Lee G, Grant JWA, Comolli P (2011) Dominant convict cichlids (Amatitlania nigrofasciata) grow faster than subordinates when fed an equal ration. Behaviour 148:877–887. doi: 10.1163/000579511X581747 CrossRefGoogle Scholar
  35. MacLean A, Huntingford FA, Ruxton GD, Morgan IJ, Hamilton J, Armstrong JD (2005) Testing the assumptions of the ideal despotic distribution with an unpredictable food supply: experiments in juvenile salmon. J Anim Ecol 74:214–225. doi: 10.1111/j.1365-2656.2005.00927.x CrossRefGoogle Scholar
  36. Martin AE, Hoover TM, Richardson JS (2013) Modeling the role of stage-structured agonistic interactions in ontogenetic habitat shifts. Behav Ecol 24:355–365. doi: 10.1093/beheco/ars171 CrossRefGoogle Scholar
  37. McDowall RM (1990) New Zealand freshwater fishes: a natural history and guide. Heinemann, AucklandGoogle Scholar
  38. McNicol RE, Noakes DLG (1981) Territories and territorial defense in juvenile brook charr, Salvelinus fontinalis (Pisces: Salmonidae). Can J Zool 59:22–28. doi: 10.1139/z81-005 CrossRefGoogle Scholar
  39. Metcalfe NB (1986) Intraspecific variation in competitive ability and food intake in salmonids: consequences for energy budgets and growth rates. J Fish Biol 28:525–531. doi: 10.1111/j.1095-8649.1986.tb05190.x CrossRefGoogle Scholar
  40. Metcalfe NB, Wright PJ, Thorpe JE (1992) Relationships between social status, otolith size at first feeding and subsequent growth in Atlantic salmon (Salmo salar). J Anim Ecol 61:585–589. doi: 10.2307/5613 CrossRefGoogle Scholar
  41. Metcalfe NB, Taylor AC, Thorpe JE (1995) Metabolic rate, social status and life-history strategies in Atlantic salmon. Anim Behav 49:431–436. doi: 10.1006/anbe.1995.0056 CrossRefGoogle Scholar
  42. Nakano S (1995) Individual differences in resource use, growth and emigration under the influence of a dominance hierarchy in fluvial red-spotted masu salmon in a natural habitat. J Anim Ecol 64:75–84. doi: 10.2307/5828 CrossRefGoogle Scholar
  43. Nakano S, Kachi T, Nagoshi M (1991) Individual growth variation of red-spotted masu salmon, Oncorhynchus masou rhodurus, in a mountain stream. Jpn J Ichthyol 38:263–270Google Scholar
  44. Parker GA (1978) Searching for mates. In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach, 1st edn. Blackwell, Oxford, pp 214–244Google Scholar
  45. Parker GA, Sutherland WJ (1986) Ideal free distributions when individuals differ in competitive ability: phenotype-limited ideal free models. Anim Behav 34:1222–1242. doi: 10.1016/S0003-3472(86)80182-8 CrossRefGoogle Scholar
  46. R Core Development Team (2013) R: A language and environment for statistical computing, version 3.0.1. R foundation for statistical computing, Vienna, Austria. Available at: http://www.R-project.org
  47. Railsback SF, Lamberson RH, Harvey BC, Duffy WE (1999) Movement rules for individual-based models of stream fish. Ecol Model 123:73–89. doi: 10.1016/S0304-3800(99)00124-6 CrossRefGoogle Scholar
  48. Rhodes JS, Quinn TP (1998) Factors affecting the outcome of territorial contests between hatchery and naturally reared coho salmon parr in the laboratory. J Fish Biol 53:1220–1230. doi: 10.1111/j.1095-8649.1998.tb00243.x CrossRefGoogle Scholar
  49. Rosenfeld JS, Boss S (2001) Fitness consequences of habitat use for juvenile cutthroat trout: energetic costs and benefits in pools and riffles. Can J Fish Aquat Sci 58:585–593. doi: 10.1139/f01-019 CrossRefGoogle Scholar
  50. Rowe DK, Smith J, Quinn J, Boothroyd I (2002) Effects of logging with and without riparian strips on fish species abundance, mean size, and the structure of native fish assemblages in Coromandel, New Zealand, streams. N Z J Mar Freshw Res 36:67–79. doi: 10.1080/00288330.2002.9517071 CrossRefGoogle Scholar
  51. Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113. doi: 10.1111/j.2041-210X.2010.00012.x CrossRefGoogle Scholar
  52. Segers FHID, Taborsky B (2012) Competition level determines compensatory growth abilities. Behav Ecol 23:665–671. doi: 10.1093/beheco/ars013 CrossRefGoogle Scholar
  53. Soldánová M, Kuris AM, Scholz T, Lafferty KD (2012) The role of spatial and temporal heterogeneity and competition in structuring trematode communities in the great pond snail, Lymnaea stagnalis (L.). J Parasitol 98:460–471. doi: 10.1645/GE-2964.1 CrossRefPubMedGoogle Scholar
  54. Sundström LF, Petersson E, Höjesjö J, Johnsson JI, Järvi T (2004) Hatchery selection promotes boldness in newly hatched brown trout (Salmo trutta): implications for dominance. Behav Ecol 15:192–198. doi: 10.1093/beheco/arg089 CrossRefGoogle Scholar
  55. Van Leeuwen TE, Rosenfeld JS, Richards JG (2011) Failure of physiological metrics to predict dominance in juvenile Pacific salmon (Oncorhynchus spp.): habitat effects on the allometry of growth in dominance hierarchies. Can J Fish Aquat Sci 68:1811–1818. doi: 10.1139/f2011-099 CrossRefGoogle Scholar
  56. Wauters LA, Verbeylen G, Preatoni D, Martinoli A, Matthysen E (2010) Dispersal and habitat cuing of Eurasian red squirrels in fragmented habitats. Popul Ecol 52:527–536. doi: 10.1007/s10144-010-0203-z CrossRefGoogle Scholar
  57. Webster MS, Hixon MA (2000) Mechanisms and individual consequences of intraspecific competition in a coral-reef fish. Mar Ecol Prog Ser 196:187–194. doi: 10.3354/meps196187 CrossRefGoogle Scholar
  58. Whitehead AL, David BO, Closs GP (2002) Ontogenetic shift in nocturnal microhabitat selection by giant kokopu in a New Zealand stream. J Fish Biol 61:1373–1385. doi: 10.1006/jfbi.2002.2147 CrossRefGoogle Scholar
  59. Whiteman EA, Côté IM (2004) Dominance hierarchies in group-living cleaning gobies: causes and foraging consequences. Anim Behav 67:239–247. doi: 10.1016/j.anbehav.2003.04.006 CrossRefGoogle Scholar
  60. Wilzbach MA (1985) Relative roles of food abundance and cover in determining the habitat distribution of stream-dwelling cutthroat trout (Salmo clarki). Can J Fish Aquat Sci 42:1668–1672. doi: 10.1139/f85-208 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Abbas Akbaripasand
    • 1
  • Martin Krkosek
    • 2
  • P. Mark Lokman
    • 1
  • Gerard P. Closs
    • 1
  1. 1.Department of ZoologyUniversity of OtagoDunedinNew Zealand
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoCanada

Personalised recommendations