, Volume 176, Issue 2, pp 581–594 | Cite as

Comparing integrated stable isotope and eddy covariance estimates of water-use efficiency on a Mediterranean successional sequence

  • Andrea ScartazzaEmail author
  • Francesco Primo Vaccari
  • Teresa Bertolini
  • Paul Di Tommasi
  • Marco Lauteri
  • Franco Miglietta
  • Enrico Brugnoli
Ecosystem ecology - Original research


Water-use efficiency (WUE), thought to be a relevant trait for productivity and adaptation to water-limited environments, was estimated for three different ecosystems on the Mediterranean island of Pianosa: Mediterranean macchia (SMM), transition (STR) and abandoned agricultural (SAA) ecosystems, representing a successional series. Three independent approaches were used to study WUE: eddy covariance measurements, C isotope composition of ecosystem respired CO2, and C isotope discrimination (Δ) of leaf material (dry matter and soluble sugars). Seasonal variations in C–water relations and energy fluxes, compared in SMM and in SAA, were primarily dependent on the specific composition of each plant community. WUE of gross primary productivity was higher in SMM than in SAA at the beginning of the dry season. Both structural and fast-turnover leaf material were, on average, more enriched in 13C in SMM than SAA, indicating relatively higher stomatal control and WUE for the long-lived macchia species. This pattern corresponded to 13C-enriched respired CO2 in SMM compared to the other ecosystems. Conversely, most of the annual herbaceous SAA species (terophytes) showed a drought-escaping strategy, with relatively high stomatal conductance and low WUE. An ecosystem-integrated Δ value was weighted for each ecosystem on the abundance of different life forms, classified according to Raunkiar’s system. Agreement was found between ecosystem WUE calculated using eddy covariance and those estimated using integrated Δ approaches. Comparing the isotopic methods, Δ of leaf soluble sugars provided the most reliable proxy for short-term changes in photosynthetic discrimination and associated shifts in integrated canopy-level WUE along the successional series.


Abandoned agriculture Carbon isotope discrimination Carbon–water relations Drought Life forms 



The authors are grateful to the PianosaLAB project, to the Director of the Porto Azzurro jail of the Ministry of Justice and to the National Park of the Tuscan Archipelago. Special thanks are due to Filippo Di Gennaro, Alessandro Matese, Jacopo Primicerio, Francesco Sabatini, Piero Toscano and Alessandro Zaldei, for their contribution in maintaining the eddy covariance towers, and to Luciano Spaccino, for skilful assistance in plant and air collections and for the accurate execution of the isotope-ratio mass spectrometry analyses. We thank the editor and two anonymous reviewers for their extremely constructive comments on the manuscript. This research was partially funded by the EU project CarboEurope IP (GOCE-CT-2003-505572) and partially by the Consiglio Nazionale delle Ricerche NITCAR project.

Supplementary material

442_2014_3027_MOESM1_ESM.pdf (235 kb)
Supplementary material 1 (PDF 235 kb)


  1. Alessio GA, De Lillis M, Brugnoli E, Lauteri M (2004) Water sources and water-use efficiency in Mediterranean coastal dune vegetation. Plant Biol 6:350–357. doi: 10.1055/s-2004-820882 PubMedCrossRefGoogle Scholar
  2. Badeck FW, Tcherkez G, Nogués S, Piel C, Ghashghaie J (2005) Post-photosynthetic fractionation of stable carbon isotopes between plant organs—a widespread phenomenon. Rapid Commun Mass Spectrom 19:1381–1391. doi: 10.1002/rcm.1912 PubMedCrossRefGoogle Scholar
  3. Baldini R (2000) Flora vascolare dell’Isola di Pianosa (Arcipelago Toscano): revisione tassonomica ed aggiornamento. Webbia 55:107–189CrossRefGoogle Scholar
  4. Beer C, Ciais P, Reichstein M, Baldocchi D, Law BE, Papale D, Soussana J-F, Ammann C, Buchmann N, Frank D, Gianelle D, Janssens IA, Knohl A, Köstner B, Moors E, Roupsard O, Verbeeck H, Vesala T, Williams CA, Wohlfahrt G (2009) Temporal and among-site variability of inherent water-use efficiency at the ecosystem level. Glob Biogeochem Cycles 23:GB2018. doi: 10.1029/2008GB003233
  5. Bonan GB (2008) Forests and climate change: forcing, feedbacks, and the climate benefits of forests. Science 320:1444–1449. doi: 10.1126/science.1155121 PubMedCrossRefGoogle Scholar
  6. Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiogical responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644. doi: 10.1051/forest:2006042 CrossRefGoogle Scholar
  7. Brooks JR, Flanagan LB, Buchmann N, Ehleringer JR (1997) Carbon isotope composition of boreal plants: functional grouping of life forms. Oecologia 110:301–311. doi: 10.1007/s004420050163 CrossRefGoogle Scholar
  8. Brugnoli E, Farquhar GD (2000) Photosynthetic fractionation of carbon isotopes. In: Leegood RC, Sharkey TD, von Caemmerer S (eds) Photosynthesis: physiology and metabolism. Advances in photosynthesis, vol 9. Kluwer, the Netherlands, pp 399-434Google Scholar
  9. Brugnoli E, Hubick KT, von Caemmerer S, Wong SC, Farquhar GD (1988) Correlation between carbon isotope discrimination in leaf starch and sugars of C3 plants and the ratio of intercellular and atmospheric partial pressures of carbon dioxide. Plant Physiol 88:1418–1424PubMedCrossRefPubMedCentralGoogle Scholar
  10. Buchmann N, Kaplan JO (2001) Carbon isotope discrimination of terrestrial ecosystems—how well do observed and modelled results match? In: Schulze ED, Heimann M, Harrison S, Holland E, Lloyd J, Prentice IC, Schimel D (eds) Global biogeochemical cycles in the climate system. Academic Press, San Diego, pp 253–258CrossRefGoogle Scholar
  11. Buchmann N, Brooks JR, Flanagan LB, Ehleringer JR (1998) Carbon isotope discrimination of terrestrial ecosystems. In: Griffiths H (ed) Stable isotopes, integration of biological, ecological and geochemical Processes. BIOS Scientific, Oxford, pp 203–221Google Scholar
  12. Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol 30:239–264. doi: 10.1071/FP02076 CrossRefGoogle Scholar
  13. Colom MR, Vaccari FP, Scartazza A, Brugnoli E, Zerbi G, Sforzi S, Baraldi R, Cotrufo MF, D’Acqui LP, Santi C, Vazzana C, Vivoli R, Spaccino L (2004) Pianosa island: structure, functioning and biodiversity of main ecosystems. J Med Ecol 5:31–40Google Scholar
  14. Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460. doi: 10.1093/jxb/erh277 PubMedCrossRefGoogle Scholar
  15. De Dato G, Pellizzaro G, Cesaraccio C, Sirca C, De Angelis P, Duce P, Spano D, Scarascia Mugnozza G (2006) Effects of warmer and drier climate conditions on plant composition and biomass production in a Mediterranean shrubland community. iForest 1:39–48. doi: 10.3832/ifor0418-0010039 CrossRefGoogle Scholar
  16. Ehleringer JR (1993) Carbon and water relations in desert plants: an isotopic perspective. In: Ehleringer JR, Hall AE, Farquhar GD (eds) Stable isotopes and plant carbon-water relations. Academic Press, San Diego, pp 155–172CrossRefGoogle Scholar
  17. Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137CrossRefGoogle Scholar
  18. Flanagan LB, Farquhar GD (2014) Variation in the carbon and oxygen isotope composition of plant biomass and its relationship to water-use efficiency at the leaf- and ecosystem scales in a northern Great Plains grassland. Plant Cell Environ. doi: 10.1111/pce.12165 PubMedGoogle Scholar
  19. Galmés J, Medrano H, Flexas J (2007) Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytol 175:81–93. doi: 10.1111/j.1469-8137.2007.02087.x PubMedCrossRefGoogle Scholar
  20. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104. doi: 10.1016/j.gloplacha.2007.09.005 CrossRefGoogle Scholar
  21. Harley PC, Tenhunen JD, Beyschlag W, Lange OL (1987) Seasonal changes in net photosynthetic capacity in leaves of Cistus salvifolius, a European Mediterranean semi-deciduous shrub. Oecologia 74:380–388. doi: 10.1007/BF00378934 CrossRefGoogle Scholar
  22. Hsieh CI, Katul G, Chi T (2000) An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv Water Resour 23:765–772 doi:
  23. Inglima I, Alberti G, Bertolini T, Vaccari FP, Gioli B, Miglietta F, Cotrufo MF, Peressotti A (2009) Precipitation pulses enhance respiration of Mediterranean ecosystems: the balance between organic and inorganic components of increased soil CO2 efflux. Glob Change Biol 15:1289–1301. doi: 10.1111/j.1365-2486.2008.01793.x CrossRefGoogle Scholar
  24. Keeling CD (1961) The concentration and isotopic abundances of atmospheric carbon dioxide in rural and marine areas. Geochim Cosmochim Acta 24:277–298CrossRefGoogle Scholar
  25. Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW, Schmid HP, Richardson AD (2013) Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499:324–327. doi: 10.1038/nature12291 PubMedCrossRefGoogle Scholar
  26. Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature 428:851–854. doi: 10.1038/nature02417 PubMedCrossRefGoogle Scholar
  27. Kuglitsch FG, Reichstein M, Beer C, Carrara A, Ceulemans R, Granier A, Janssens IA, Koestner B, Lindroth A, Loustau D, Matteucci G, Montagnani L, Moors EJ, Papale D, Pilegaard K, Rambal S, Rebmann C, Schulze ED, Seufert G, Verbeeck H, Vesala T, Aubinet M, Bernhofer C, Foken T, Grünwald T, Heinesch B, Kutsch W, Laurila T, Longdoz B, Miglietta F, Sanz MJ, Valentini R (2008) Characterisation of ecosystem water-use efficiency of European forests from eddy covariance measurements. Biogeosci Discuss 5:4481–4519. doi: 10.5194/bgd-5-4481-2008 CrossRefGoogle Scholar
  28. Lauteri M, Scartazza A, Guido MC, Brugnoli E (1997) Genetic variation in photosynthetic capacity, carbon isotope discrimination and mesophyll conductance in provenances of Castanea sativa adapted to different environments. Funct Ecol 11:675–683. doi: 10.1046/j.1365-2435.1997.00140.x CrossRefGoogle Scholar
  29. Lauteri M, Pliura A, Monteverdi MC, Brugnoli E, Villani F, Eriksson G (2004) Genetic variation in carbon isotope discrimination in six European populations of Castanea sativa Mill. originating from contrasting localities. J Evol Biol 17:1286–1296. doi: 10.1111/j.1420-9101.2004.00765.x PubMedCrossRefGoogle Scholar
  30. Marshall JD, Monserud RA (1996) Homeostatic gas-exchange parameters inferred from 13C/12C in tree rings of conifers. Oecologia 105:13–21. doi: 10.1007/BF00328786 CrossRefGoogle Scholar
  31. Medrano H, Flexas J, Galmés J (2009) Variability in water-use efficiency at the leaf level among Mediterranean plants with different growth forms. Plant Soil 317:17–29. doi: 10.1007/s11104-008-9785-z CrossRefGoogle Scholar
  32. Medrano H, Gulìas J, Chaves MM, Galmés J, Flexas J (2012) Photosynthetic water-use efficiency. In: Flexas J, Loreto F, Medrano H (eds) Terrestrial photosynthesis in a changing environment: a molecular, physiological and ecological approach. Cambridge University Press, Cambridge, pp 523–536CrossRefGoogle Scholar
  33. Moreno-Gutiérrez C, Dawson TE, Nicolás E, Querejeta JI (2012) Isotopes reveal contrasting water-use strategies among coexisting plant species in a Mediterranean ecosystem. New Phytol 196:489–496. doi: 10.1111/j.1469-8137.2012.04276.x PubMedCrossRefGoogle Scholar
  34. Navarro-Cano JA, Rivera D, Barberá GG (2009) Induction of seed germination in Cistus heterophyllus (Cistaceae): a rock rose critically endangered in Spain. Res J Bot 4:10–16. doi: 10.3923/rjb.2009.10.16 CrossRefGoogle Scholar
  35. Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R, Vesala T, Yakir D (2006) Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3:571–583. doi: 10.5194/bg-3-571-2006 CrossRefGoogle Scholar
  36. Peñuelas J, Terradas J, Lloret F (2011) Solving the conundrum of plant species coexistence: water in space and time matters most. New Phytol 189:5–8. doi: 10.1111/j.1469-8137.2010.03570.x PubMedCrossRefGoogle Scholar
  37. Pignatti S (1982) Flora d’Italia, vols 1, 2 and 3. Edagricole, BolognaGoogle Scholar
  38. Ponton S, Flanagan LB, Alstad KP, Johnson BG, Morgenstern K, Kljun N, Black TA, Barr TA (2006) Comparison of ecosystem water-use efficiency among Douglas fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques. Glob Change Biol 12:294–310. doi: 10.1111/j.1365-2486.2005.01103.x CrossRefGoogle Scholar
  39. Rapetti E (1835) Dizionario geografico. Fisico, Storico della Toscana, pp 607–611Google Scholar
  40. Reichstein M, Tenhunen JD, Roupsard O, Ourcival JM, Rambal S, Miglietta F, Peressotti A, Pecchiari M, Tirone G, Valentini R (2002) Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current hypotheses? Glob Change Biol 8:999–1017. doi: 10.1046/j.1365-2486.2002.00530.x CrossRefGoogle Scholar
  41. Reichstein M, Falge E, Baldocchi D, Papale D, Valentini R, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, Janous D, Knohl A, Laurela T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival J-M, Rambal S, Rotenberg E, Sanz M, Seufert G, Vaccari F, Vesala T, Yakir D (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Change Biol 11:1424–1439. doi: 10.1111/j.1365-2486.2005.001002.x CrossRefGoogle Scholar
  42. Scartazza A, Mata C, Matteucci G, Yakir D, Moscatello S, Brugnoli E (2004) Comparisons of δ13C of photosynthetic products and ecosystem respiratory CO2 and their responses to seasonal climate variability. Oecologia 140:340–351. doi: 10.1007/s00442-004-1588-1 PubMedCrossRefGoogle Scholar
  43. Schwalm CR, Williams CA, Schaefer K, Arneth A, Bonal D, Buchmann N, Chen J, Law BE, Lindroth A, Luyssaert S, Reichstein M, Richardson AD (2010) Assimilation exceeds respiration sensitivity to drought: a FLUXNET synthesis. Glob Change Biol 16:657–670. doi: 10.1111/j.1365-2486.2009.01991.x CrossRefGoogle Scholar
  44. Smedley MP, Dawson TE, Comstock JP, Donovan LA, Sherrill DE, Cook CS, Ehleringer JR (1991) Seasonal carbon isotope discrimination in a grassland community. Oecologia 85:314–320. doi: 10.1007/BF00320605 CrossRefGoogle Scholar
  45. Sokal RR, Rohlf FJ (1995) Biometry. Freeman, New YorkGoogle Scholar
  46. Sterl A, Severijns C, Dijkstra HA, Hazeleger W, van Oldenborgh G, van den Broeke M, Burgers G, van den Hurk B, van Leeuwen PJ, van Velthoven P (2008) When can we expect extremely high surface temperatures? Geophys Res Lett 35:L14703. doi: 10.1029/2008GL034071 CrossRefGoogle Scholar
  47. Vaccari FP, Lugato E, Gioli B, D’Acqui L, Genesio L, Toscano P, Matese A, Miglietta F (2012) Land use change and soil organic carbon dynamics in Mediterranean agro-ecosystems: the case study of Pianosa Island. Geoderma 175–176:29–36. doi: 10.1016/j.geoderma.2012.01.021 CrossRefGoogle Scholar
  48. van der Molen MK, Dolman AJ, Ciais P, Eglin T, Gobron N, Law BE, Meir P, Peters W, Phillips OL, Reichstein M, Chen T, Dekker SC, Doubkova M, Friedl MA, Jung M, van den Hurk BJJM, de Jeu RAM, Kruijt B, Ohta T, Rebel KT, Plummer S, Seneviratne SI, Sitch S, Teuling AJ, van der Werf GR, Wang G (2011) Drought and ecosystem carbon cycling. Agric For Meteorol 151:765–773. doi: 10.1016/j.agrformet.2011.01.018 CrossRefGoogle Scholar
  49. Werner C, Máguas C (2010) Carbon isotope discrimination as a tracer of functional traits in a mediterranean macchia plant community. Funct Plant Biol 37:467–477. doi: 10.1071/FP09081 CrossRefGoogle Scholar
  50. Werner C, Correia O, Beyschlag W (1999) Two different strategies of Mediterranean macchia plants to avoid photoinhibitory damage by excessive radiation levels during summer drought. Acta Oecol 20:15–23. doi: 10.1016/S1146-609X(99)80011-3 CrossRefGoogle Scholar
  51. Werner C, Ryel RJ, Correia O, Beyschlag W (2001) Structural and functional variability within the canopy and its relevance for carbon gain and stress avoidance. Acta Oecol 22:129–138. doi: 10.1016/S1146-609X(01)01106-7 CrossRefGoogle Scholar
  52. Werner C, Correja O, Beyschlag W (2002) Characteristic patterns of chronic and dynamic photoinhibition of different functional groups in a Mediterranean ecosystem. Funct Plant Biol 29(8):999–1011. doi: 10.1071/PP01143 CrossRefGoogle Scholar
  53. West AG, Dawson TE, February GF, Midgley GF, Bond WJ, Aston TL (2012) Diverse functional responses to drought in a Mediterranean-type shrubland in South Africa. New Phytol 195:396–407. doi: 10.1111/j.1469-8137.2012.04170.x PubMedCrossRefGoogle Scholar
  54. Pataki DE, Ehleringer JR, Flanagan LB, Yakir D, Bowling DR, Still CJ, Buchmann N, Kaplan JO, Berry JA (2003) The application and interpretation of Keeling plots in terrestrial carbon cycle research. Glob Biogeochem Cycles 17:1022. doi: 10.1029/2001/GB001850 CrossRefGoogle Scholar
  55. Yakir D, Da Silveira Lobo Sternberg L (2000) The use of stable isotopes to study ecosystem gas exchange. Oecologia 123:297–311. doi: 10.1007/s004420051016 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Andrea Scartazza
    • 1
    • 5
    Email author
  • Francesco Primo Vaccari
    • 2
  • Teresa Bertolini
    • 3
  • Paul Di Tommasi
    • 4
  • Marco Lauteri
    • 5
  • Franco Miglietta
    • 2
    • 6
    • 7
  • Enrico Brugnoli
    • 8
    • 5
  1. 1.Istituto di Biologia Agro-ambientale e Forestale (IBAF)Consiglio Nazionale delle RicercheMonterotondo Scalo (RM)Italy
  2. 2.Istituto di Biometeorologia (IBIMET)Consiglio Nazionale delle RicercheFirenze (FI)Italy
  3. 3.Divisione Impatti sull’Agricoltura, Foreste ed Ecosistemi Naturali Terrestri (IAFENT)Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC)Lecce (LE)Italy
  4. 4.Istituto per i Sistemi Agricoli e Forestali del Mediterraneo (ISAFoM)Consiglio Nazionale delle RicercheErcolano (NA)Italy
  5. 5.Istituto di Biologia Agro-ambientale e Forestale (IBAF)Consiglio Nazionale delle RicerchePorano (TR)Italy
  6. 6.FoxLab (Forest and Wood)Fondazione E. Mach-IasmaS. Michele all’Adige (TN)Italy
  7. 7.Laboratory of Ecohydrology, Faculté ENACÉcole Polytechnique FédéraleLausanneSwitzerland
  8. 8.Dipartimento Scienze del Sistema Terra e Tecnologie per l’AmbienteConsiglio Nazionale delle RicercheRoma (RM)Italy

Personalised recommendations