, Volume 176, Issue 2, pp 431–443 | Cite as

A one night stand? Reproductive excursions of female roe deer as a breeding dispersal tactic

  • Lucie Debeffe
  • Stefano Focardi
  • Christophe Bonenfant
  • A. J. Mark Hewison
  • Nicolas Morellet
  • Cécile Vanpé
  • Marco Heurich
  • Petter Kjellander
  • John D. C. Linnell
  • Atle Mysterud
  • Maryline Pellerin
  • Pavel Sustr
  • Ferdinando Urbano
  • Francesca Cagnacci
Behavioral ecology - Original research


Breeding dispersal, defined as the net movement between successive breeding sites, remains a poorly understood and seldom reported phenomenon in mammals, despite its importance for population dynamics and genetics. In large herbivores, females may be more mobile during the breeding season, undertaking short-term trips (excursions) outside their normal home range. If fertilisation occurs, leading to gene flow of the male genome, this behaviour could be considered a form of breeding dispersal from a genetic point of view. Here, we investigated ranging behaviour of 235 adult roe deer using intensive GPS monitoring in six populations across Europe within the EURODEER initiative. We show that excursions are common from June to August among females, with 41.8 % (vs. 18.1 % of males) making at least one excursion. Most individuals performed only one excursion per season and departure dates for females were concentrated in time, centred on the rutting period, suggesting a link with reproduction. The distance females travelled during excursions was significantly greater than the site-specific average diameter of a male home range, while travel speed decreased once they progressed beyond this diameter, indicating search behaviour or interaction with other male(s) outside the resident male’s territory. Because adults are normally highly sedentary, the potential for mating with relatives is substantial; hence, we conclude that rut excursions could be an alternative tactic enabling females to avoid mating with a closely related male. To understand better the ultimate drivers at play, it will be crucial to explore the genetic causes and consequences of this behaviour.


Mate choice Inbreeding avoidance GPS telemetry Rut excursion Ungulate 



This paper was conceived and written within the EURODEER collaborative project (paper 3 of the EURODEER series; Co-authors are grateful to all members for their support for the initiative. We also thank two anonymous referees and the handling editor for constructive comments on an earlier version of this paper. The EURODEER spatial database is hosted by the Edmund Mach Foundation. GPS data collection of the Edmund Mach Foundation was supported by the Autonomous Province of Trento under Grant N. 3479 to F. Cagnacci (BECOCERWI–Behavioural Ecology of Cervids in Relation to Wildlife Infections). F. Cagnacci thanks the Wildlife and Forest Service of the Autonomous Province of Trento and the Hunting Association of Trento Province (A.C.T.) for support and help during captures. Financial support for GPS data collection in the Bavarian Forest was provided by the EU-programme INTERREG IV (EFRE Ziel 3) and the Bavarian Forest National Park Administration. The Swedish study was supported by grants from the private foundation of “Marie Claire Cronstedts Minne”, The Swedish Environmental Protection Agency and The Swedish Association for Hunting and Wildlife Management. M. Hewison and N. Morellet would like to thank the local hunting associations, the Fédération Départementale des Chasseurs de la Haute Garonne, as well as numerous co-workers and volunteers for their assistance and, in particular, B. Cargnelutti, J.M. Angibault, B. Lourtet, D. Picot and J. Merlet. The France South study was partly funded by the INDHET ANR grant (ANR-12-BSV7-0023-02). C. Vanpé and L. Debeffe were supported by the PATCH RPDOC ANR project (ANR-12-PDOC-0017-01) attributed to CV from the French National Research Agency (PATCH project). The Norwegian study was financed by the Research Council of Norway, the Directorate for Nature Management, and the county governor’s office in Buskerud county. The authors declare that they have no conflict of interest.

Supplementary material

442_2014_3021_MOESM1_ESM.docx (328 kb)
Supplementary material 1 (DOCX 327 kb)


  1. Bates D, Maechler M, Bolker B (2011) lme4: Linear mixed-effects models using S4 classes R package, Version 0.999375-39Google Scholar
  2. Berteaux D, Boutin S (2000) Breeding dispersal in female North American red squirrels. Ecology 81:1311–1326. doi:10.1890/0012-9658(2000)081[1311:BDIFNA]2.0.CO;2Google Scholar
  3. Bocci A, Aiello V, Lovari S (2013) Excursion behaviour of female roe deer may depend on density. Behav Processes 97:18–20. doi: 10.1016/j.beproc.2013.03.004 PubMedCrossRefGoogle Scholar
  4. Bonnot N, Gaillard JM, Coulon A et al (2010) No difference between the sexes in fine-scale spatial genetic structure of roe deer. PLoS One 5:e14436. doi: 10.1371/journal.pone.0014436 PubMedCrossRefPubMedCentralGoogle Scholar
  5. Börger L, Franconi N, De Michele G et al (2006) Effects of sampling regime on the mean and variance of home range size estimates. J Anim Ecol 75:1393–1405. doi: 10.1111/j.1365-2656.2006.01164.x PubMedCrossRefGoogle Scholar
  6. Bramley PS (1970) Territoriality and reproductive behavior of roe deer. J Reprod Fertil Suppl 11:43–70PubMedGoogle Scholar
  7. Burnham KP, Anderson DR (1998) Model selection and inference. Springer, New YorkCrossRefGoogle Scholar
  8. Byers JA, Moodie JD, Hall N (1994) Pronghorn females choose vigorous mates. Anim Behav 47:33–43. doi: 10.1006/anbe.1994.1005 CrossRefGoogle Scholar
  9. Calabuig G, Ortego J, Cordero PJ, Aparicio JM (2008) Causes, consequences and mechanisms of breeding dispersal in the colonial lesser kestrel, Falco naumanni. Anim Behav 76:1989–1996. doi: 10.1016/j.anbehav.2008.08.019 CrossRefGoogle Scholar
  10. Calenge C (2006) The package "adehabitat" for R software: a tool for the analysis of space and habitat use by animal. Ecol Model 197:516–519. doi: 10.1016/j.ecolmodel.2006.03.017 CrossRefGoogle Scholar
  11. Clobert J, Danchin E, Dhondt AA, Nichos JD (2001) Dispersal. Oxford University Press, New YorkGoogle Scholar
  12. Clutton-Brock TH (1991) The evolution of parental care. Princeton University Press, PrincetonGoogle Scholar
  13. Cohas A, Bonenfant C, Kempenaers B, Allaine D (2009) Age-specific effect of heterozygosity on survival in alpine marmots, Marmota marmota. Mol Ecol 18:1491–1503. doi: 10.1111/j.1365-294X.2009.04116.x PubMedCrossRefGoogle Scholar
  14. Coulon A, Cosson JF, Angibault JM et al (2004) Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach. Mol Ecol 13:2841–2850. doi: 10.1111/j.1365-294X.2004.02253.x PubMedCrossRefGoogle Scholar
  15. Da Silva A, Gaillard JM, Yoccoz NG et al (2009) Heterozygosity-fitness correlations revealed by neutral and candidate gene markers in roe deer from a long-term study. Evolution 63:403–417. doi: 10.1111/j.1558-5646.2008.00542.x PubMedCrossRefGoogle Scholar
  16. Danchin E, Cam E (2002) Can non-breeding be a cost of breeding dispersal? Behav Ecol Sociobiol 51:153–163. doi: 10.1007/s00265-001-0423-5 CrossRefGoogle Scholar
  17. Daniels SJ, Walters JR (2000) Between-year breeding dispersal in Red-cockaded Woodpeckers: multiple causes and estimated cost. Ecology 81:2473–2484CrossRefGoogle Scholar
  18. Debeffe L, Morellet N, Cargnelutti B et al (2012) Condition-dependent natal dispersal in a large herbivore: heavier animals show a greater propensity to disperse and travel further. J Anim Ecol 81:1327–1337. doi: 10.1111/j.1365-2656.2012.02006.x PubMedCrossRefGoogle Scholar
  19. Fieberg J, Delgiudice G (2008) Exploring migration data using interval-censored time-to-event models. J Wildl Manag 72:1211–1219. doi: 10.2193/2007-403 CrossRefGoogle Scholar
  20. Fisher DO, Lara MC (1999) Effects of body size and home range on access to mates and paternity in male bridled nailtail wallabies. Anim Behav 58:121–130. doi: 10.1006/anbe.1999.1119 PubMedCrossRefGoogle Scholar
  21. Gaillard JM, Sempere AJ, Boutin JM et al (1992) Effects of age and body-weight on the proportion of females breeding in a population of roe deer (Capreolus-capreolus). Can J Zool-Rev Can Zool 70:1541–1545. doi: 10.1139/z92-212 CrossRefGoogle Scholar
  22. Garcia-Navas V, Jose Sanz J (2011) Females call the shots: breeding dispersal and divorce in blue tits. Behav Ecol 22:932–939. doi: 10.1093/beheco/arr067 CrossRefGoogle Scholar
  23. Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162. doi: 10.1016/S0003-3472(80)80103-5 CrossRefGoogle Scholar
  24. Greenwood PJ, Harvey PH (1982) The natal and breeding dispersal of birds. Annu Rev Ecol Syst 13:1–21. doi: 10.1146/ CrossRefGoogle Scholar
  25. Hamilton WD (1990) Mate choice near or far. Am Zool 30:341–352. doi: 10.1093/icb/30.2.341 Google Scholar
  26. Harrington DP, Fleming TR (1982) A class of rank test procedures for censored survival-data. Biometrika 69:553–566. doi: 10.1093/biomet/69.3.553 CrossRefGoogle Scholar
  27. Hewison AJM, Vincent JP, Reby D (1998) Social organisation of European roe deer. The European Roe Deer: the biology of success. Scandinavian University Press, osloGoogle Scholar
  28. Hoffman JI, Forcada J, Trathan PN, Amos W (2007) Female fur seals show active choice for males that are heterozygous and unrelated. Nature 445:912–914. doi: 10.1038/nature05558 PubMedCrossRefGoogle Scholar
  29. Hoffmann B, Barth D, Karg H (1978) Progesterone and estrogen-levels in peripheral plasma of the pregnant and non-pregnant roe deer (Capreolus-capreolus). Biol Reprod 19:931–935. doi: 10.1095/biolreprod19.5.931 PubMedCrossRefGoogle Scholar
  30. Kolodzinski JJ, Tannenbaum LV, Muller LI et al (2010) Excursive behaviors by female white-tailed deer during estrus at two mid-atlantic sites. Am Midl Nat 163:366–373. doi: 10.1674/0003-0031-163.2.366 CrossRefGoogle Scholar
  31. Kurt F, Hartl G, Volk F (1993) Breeding strategies and genetic-variation in European roe deer Capreolus capreolus populations. Acta Theriol (Warsz) 38:187–194CrossRefGoogle Scholar
  32. Labisky RF, Fritzen DE (1998) Spatial mobility of breeding female white-tailed deer in a low-density population. J Wildl Manag 62:1329–1334. doi: 10.2307/3801998 CrossRefGoogle Scholar
  33. Lamberti P, Mauri L, Merli E et al (2006) Use of space and habitat selection by roe deer Capreolus capreolus in a Mediterranean coastal area: how does woods landscape affect home range? J Ethol 24:181–188CrossRefGoogle Scholar
  34. Liberg O, Johansson A, Andersen R, Linnell JDC (1998) Mating system, mating tactics and the function of male territory in roe deer. In: Andersen R, Duncan P, Linnell J (eds) The European Roe Deer: the biology of success. Scandinavian University Press, Oslo, pp 221–256Google Scholar
  35. Lovari S, Bartolommei P, Meschi F, Pezzo F (2008) Going out to mate: excursion behaviour of female roe deer. Ethology 114:886–896. doi: 10.1111/j.1439-0310.2008.01549.x CrossRefGoogle Scholar
  36. Lukas D, Clutton-Brock TH (2011) Group structure, kinship, inbreeding risk and habitual female dispersal in plural-breeding mammals. J Evol Biol 24:2624–2630. doi: 10.1111/j.1420-9101.2011.02385.x PubMedCrossRefGoogle Scholar
  37. Marjamaeki PH, Contasti AL, Coulson TN, McLoughlin PD (2013) Local density and group size interacts with age and sex to determine direction and rate of social dispersal in a polygynous mammal. Ecol Evol 3:3073–3082. doi: 10.1002/ece3.694 CrossRefGoogle Scholar
  38. Morellet N, Van Moorter B, Cargnelutti B et al (2011) Landscape composition influences roe deer habitat selection at both home range and landscape scales. Landsc Ecol 26:999–1010. doi: 10.1007/s10980-011-9624-0 CrossRefGoogle Scholar
  39. Morton NE, Crow JF, Muller HJ (1956) An estimate of the mutational damage in man from data on consanguineous marriages. Proc Natl Acad Sci USA 42:855–863. doi: 10.1073/pnas.42.11.855 PubMedCrossRefPubMedCentralGoogle Scholar
  40. Naguib M, Altenkamp R, Griessmann B (2001) Nightingales in space: song and extra-territorial forays of radio tagged song birds. J Ornithol 142:306–312. doi: 10.1046/j.1439-0361.2001.01005.x CrossRefGoogle Scholar
  41. Nicol SC, Vanpe C, Sprent J et al (2011) Spatial ecology of a ubiquitous Australian anteater, the short-beaked echidna (Tachyglossus aculeatus). J Mammal 92:101–110. doi: 10.1644/09-MAMM-A-398.1 CrossRefGoogle Scholar
  42. Paradis E, Baillie SR, Sutherland WJ, Gregory RD (1998) Patterns of natal and breeding dispersal in birds. J Anim Ecol 67:518–536. doi: 10.1046/j.1365-2656.1998.00215.x CrossRefGoogle Scholar
  43. Pedersen MC, Dunn PO, Whittingham LA (2006) Extraterritorial forays are related to a male ornamental trait in the common yellowthroat. Anim Behav 72:479–486. doi: 10.1016/j.anbehav.2006.02.010 CrossRefGoogle Scholar
  44. Pusey A, Wolf M (1996) Inbreeding avoidance in animals. Trends Ecol Evol 11:201–206. doi: 10.1016/0169-5347(96)10028-8 PubMedCrossRefGoogle Scholar
  45. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  46. Ratcliffe PR, Mayle B (1992) Roe deer biology and management. For Commision Bull 105:1–28Google Scholar
  47. Richard E, Morellet N, Cargnelutti B et al (2008) Ranging behaviour and excursions of female roe deer during the rut. Behav Processes 79:28–35. doi: 10.1016/j.beproc.2008.04.008 PubMedCrossRefGoogle Scholar
  48. Ronce O (2007) How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Evol Syst 38:231–253. doi: 10.1146/annurev.ecolsys.38.091206.095611 CrossRefGoogle Scholar
  49. Sempéré AJ, Mauget R, Mauget C (1998) Reproductive physiology of roe deer. In: Andersen R, Duncan P, Linnell J (eds) The European Roe deer: the biology of success. Scandinavian University Press, Oslo, pp 161–188Google Scholar
  50. Sillero-Zubiri C, Gottelli D, Macdonald DW (1996) Male philopatry, extra-pack copulations and inbreeding avoidance in Ethiopian wolves (Canis simensis). Behav Ecol Sociobiol 38:331–340. doi: 10.1007/s002650050249 CrossRefGoogle Scholar
  51. Soulsbury CD, Iossa G, Baker PJ et al (2011) Behavioral and spatial analysis of extraterritorial movements in red foxes (Vulpes vulpes). J Mammal 92:190–199. doi: 10.1644/09-MAMM-A-187.1 CrossRefGoogle Scholar
  52. Stopher KV, Nussey DH, Clutton-Brock TH et al (2011) The red deer rut revisited: female excursions but no evidence females move to mate with preferred males. Behav Ecol 22:808–818. doi: 10.1093/beheco/arr052 CrossRefGoogle Scholar
  53. Therneau T, Lumley T (2010) survival: Survival analysis, including penalised likelihood R package, Version 2.36-2Google Scholar
  54. Urbano F, Cagnacci F (2014) Spatial database for GPS widlife tracking data. A practical guide to creating a data management system with PostgreSQL/PostGIS and R. Springer, BerlinCrossRefGoogle Scholar
  55. Vanpé C, Gaillard JM, Kjellander P et al (2007) Antler size provides an honest signal of male phenotypic quality in roe deer. Am Nat 169:481–493. doi: 10.1086/512046 PubMedCrossRefGoogle Scholar
  56. Vanpé C, Kjellander P, Galan M et al (2008) Mating system, sexual dimorphism, and the opportunity for sexual selection in a territorial ungulate. Behav Ecol 19:309–316. doi: 10.1093/beheco/arm132 CrossRefGoogle Scholar
  57. Vanpé C, Gaillard JM, Morellet N et al (2009a) Age-specific variation in male breeding success of a territorial ungulate species, the European roe deer. J Mammal 90:661–665. doi: 10.1644/08-MAMM-A-137R.1 CrossRefGoogle Scholar
  58. Vanpé C, Kjellander P, Gaillard JM et al (2009b) Multiple paternity occurs with low frequency in the territorial roe deer, Capreolus capreolus. Biol J Linn Soc 97:128–139. doi: 10.1111/j.1095-8312.2009.01196.x CrossRefGoogle Scholar
  59. Vanpé C, Morellet N, Kjellander P et al (2009c) Access to mates in a territorial ungulate is determined by the size of a male’s territory, but not by its habitat quality. J Anim Ecol 78:42–51. doi: 10.1111/j.1365-2656.2008.01467.x PubMedCrossRefGoogle Scholar
  60. Vanpé C, Gaillard JM, Kjellander P et al (2010) Assessing the intensity of sexual selection on male body mass and antler length in roe deer Capreolus capreolus: is bigger better in a weakly dimorphic species? Oikos 119:1484–1492. doi: 10.1111/j.1600-0706.2010.18312.x CrossRefGoogle Scholar
  61. Wahlstrom LK (1994) The significance of male male-aggression for yearling dispersal in roe reer (Capreolus-capreolus). Behav Ecol Sociobiol 35:409–412. doi: 10.1007/BF00165843 CrossRefGoogle Scholar
  62. Winters JB, Waser PM (2003) Gene dispersal and outbreeding in a philopatric mammal. Mol Ecol 12:2251–2259. doi: 10.1046/j.1365-294X.2003.01896.x PubMedCrossRefGoogle Scholar
  63. Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc Ser B-Stat Methodol 73:3–36CrossRefGoogle Scholar
  64. Worton BJ (1989) Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70:164–168. doi: 10.2307/1938423 CrossRefGoogle Scholar
  65. Zeh JA, Zeh DW (1996) The evolution of polyandry I: Intragenomic conflict and genetic incompatibility. Proc R Soc Lond B Biol Sci 263:1711–1717. doi: 10.1098/rspb.1996.0250 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Lucie Debeffe
    • 1
    • 2
  • Stefano Focardi
    • 3
  • Christophe Bonenfant
    • 2
  • A. J. Mark Hewison
    • 1
  • Nicolas Morellet
    • 1
  • Cécile Vanpé
    • 2
  • Marco Heurich
    • 4
  • Petter Kjellander
    • 5
  • John D. C. Linnell
    • 6
  • Atle Mysterud
    • 7
  • Maryline Pellerin
    • 8
    • 9
  • Pavel Sustr
    • 10
  • Ferdinando Urbano
    • 11
  • Francesca Cagnacci
    • 12
  1. 1.CEFS-INRACastanet-TolosanFrance
  2. 2.UMR 5558, Laboratoire Biométrie et Biologie ÉvolutiveUniversité Claude Bernard Lyon 1Villeurbanne CedexFrance
  3. 3.Istituto Dei Sistemi Compessi, Sezione di FirenzeSesto Fiorentino (FI)Italy
  4. 4.Department of Research and DocumentationBavarian Forest National ParkGrafenauGermany
  5. 5.Grimsö Wildlife Research Station, Department of EcologySwedish University of Agricultural ScienceUppsalaSweden
  6. 6.Norwegian Institute for Nature ResearchTrondheimNorway
  7. 7.Centre for Ecological and Evolutionary Synthesis, Department of BiologyUniversity of OsloOsloNorway
  8. 8.Centre d’Etudes Biologiques de ChizéCNRSBeauvoir-sur-NiortFrance
  9. 9.ONCFS-CNERA Cervidés SanglierGerstheimFrance
  10. 10.Department of Biodiversity ResearchGlobal Change Research Centre AS CRČeské BudějoviceCzech Republic
  11. 11.Iuav School of Doctoral StudiesNew Technologies and Information for the Region and EnvironmentVenice (VE)Italy
  12. 12.Research and Innovation CentreFondazione Edmund MachSan Michele all’Adige (Tn)Italy

Personalised recommendations