, Volume 176, Issue 1, pp 225–235 | Cite as

Litter identity mediates predator impacts on the functioning of an aquatic detritus-based food web

  • Jérémy Jabiol
  • Julien Cornut
  • Michaël Danger
  • Marion Jouffroy
  • Arnaud Elger
  • Eric Chauvet
Ecosystem ecology - Original research


During past decades, several mechanisms such as resource quality and habitat complexity have been proposed to explain variations in the strength of trophic cascades across ecosystems. In detritus-based headwater streams, litter accumulations constitute both a habitat and a resource for detritivorous macroinvertebrates. Because litter edibility (which promotes trophic cascades) is usually inversely correlated with its structural complexity (which weakens trophic cascades), there is a great scope for stronger trophic cascades in litter accumulations that are dominated by easily degradable litter species. However, it remains unclear how mixing contrasting litter species (conferring both habitat complexity and high quality resource) may influence top–down controls on communities and processes. In enclosures exposed in a second-order stream, we manipulated litter species composition by using two contrasting litter (alder and oak), and the presence–absence of a macroinvertebrate predator (Cordulegaster boltonii larvae), enabling it to effectively exert predation pressure, or not, on detritivores (consumptive versus non-consumptive predation effects). Leaf mass loss, detritivore biomass and community structure were mostly controlled independently by litter identity and mixing and by predator consumption. However, the strength of predator control was mediated by litter quality (stronger on alder), and to a lesser extent by litter mixing (weaker on mixed litter). Refractory litter such as oak leaves may contribute to the structural complexity of the habitat for stream macroinvertebrates, allowing the maintenance of detritivore communities even when strong predation pressure occurs. We suggest that considering the interaction between top–down and bottom–up factors is important when investigating their influence on natural communities and ecosystem processes in detritus-based ecosystems.


Trophic cascades Litter mixing Litter decomposition Shredder Cordulegaster boltonii 



We are grateful to Mark Gessner, Markus Schindler and Brendan McKie who designed and built the enclosures used in this experiment, André Frainer Barbosa for constructive discussion about the experimental design, as well as Barbara Downes and several anonymous referees for their very helpful comments and suggestions on the manuscript. We also greatly appreciate the technical assistance of Sylvain Lamothe and Didier Lambrigot in the field and laboratory. Finally, we thank Jean-Claude Arnaud, Président du syndicat des riverains et pêcheurs de Roquefère et de Labastide, who kindly allowed us access to the Rieutort.


  1. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi: 10.1111/j.1442-9993.2001.01070 Google Scholar
  2. Borer ET, Seabloom EW, Shurin JB, Anderson KE, Blanchette CA, Broitman B, Cooper SD, Halpern BS (2005) What determines the strength of a trophic cascade? Ecology 86:528–537. doi: 10.1890/03-0816 CrossRefGoogle Scholar
  3. Boyero L, Rincón PA, Pearson RG (2008) Effects of a predatory fish on a tropical detritus-based food web. Ecol Res 23:649–655. doi: 10.1007/S11284-007-0424-6 CrossRefGoogle Scholar
  4. Brönmark C, Hansson L-A (2012) Chemical ecology in aquatic systems. Oxford University Press, OxfordGoogle Scholar
  5. Bruno JF, Boyer KE, Duffy JE, Lee SC (2008) Relative and interactive effects of plant and grazer richness in a benthic marine community. Ecology 89:2518–2528. doi: 10.1890/07-1345.1 PubMedCrossRefGoogle Scholar
  6. Buria L, Albariño R, Díaz Villanueva V, Modenutti B, Balseiro E (2010) Does predation by the introduced rainbow trout cascade down to detritus and algae in a forested small stream in Patagonia? Hydrobiologia 651:161–172. doi: 10.1007/s10750-010-0293-9 CrossRefGoogle Scholar
  7. Chaves-Campos J, Johnson SG, Hulsey CD (2011) Spatial geographic mosaic in an aquatic predator–prey network. PLoS ONE 6:e22472. doi: 10.1371/journal.pone.0022472 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Chivers DP, Smith RJF (1998) Chemical alarm signalling in aquatic predator−prey systems: a review and prospectus. Ecoscience 5:338–352Google Scholar
  9. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143. doi: 10.1111/j.1442-9993.1993.tb00438.x CrossRefGoogle Scholar
  10. Diehl S (1992) Fish predation and benthic community structure: the role of omnivory and habitat complexity. Ecology 73:1646–1661CrossRefGoogle Scholar
  11. Gessner MO, Chauvet E (1994) Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology 75:1807–1817CrossRefGoogle Scholar
  12. Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380. doi: 10.1016/j.tree.2010.01.010 PubMedCrossRefGoogle Scholar
  13. Graça MAS (2001) The role of invertebrates on leaf litter decomposition in streams − a review. Int Rev Hydrobiol 86:383–393. doi: 10.1002/1522-2632(200107)86:4/5<383:AID-IROH383>3.0.CO;2-D CrossRefGoogle Scholar
  14. Greig HS, McIntosh AR (2006) Indirect effects of predatory trout on organic matter processing in detritus-based stream food webs. Oikos 112:31–40. doi: 10.1111/j.0030-1299.2006.14219.x CrossRefGoogle Scholar
  15. Halaj J, Wise DH (2001) Terrestrial trophic cascades: how much do they trickle? Am Nat 157:262–281. doi: 10.1086/319190 PubMedCrossRefGoogle Scholar
  16. Hall SR, Shurin JB, Diehl S, Nisbet RM (2007) Food quality, nutrient limitation of secondary production, and the strength of trophic cascades. Oikos 116:1128–1143. doi: 10.1111/j.0030-1299.2007.15875.x CrossRefGoogle Scholar
  17. Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–1156. doi: 10.1890/0012-9658(1999)080 CrossRefGoogle Scholar
  18. Hladyz S, Gessner MO, Giller PS, Pozo J, Woodward G (2009) Resource quality and stoichiometric constraints on stream ecosystem functioning. Freshw Biol 54:957–970. doi: 10.1111/j.1365-2427.2008.02138.x CrossRefGoogle Scholar
  19. Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35. doi: 10.1890/04-0922 CrossRefGoogle Scholar
  20. Johnson S, Covich A (1997) Scales of observation of riparian forests and distributions of suspended detritus in a prairie river. Freshw Biol 37:163–175. doi: 10.1046/j.1365-2427.1997.00150.x CrossRefGoogle Scholar
  21. Kalinkat G, Brose U, Rall BC (2012) Habitat structure alters top–down control in litter communities. Oecologia 172:877–887. doi: 10.1007/s00442-012-2530-6 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Kominoski JS, Pringle CM (2009) Resource–consumer diversity: testing the effects of leaf litter species diversity on stream macroinvertebrate communities. Freshw Biol 54:1461–1473. doi: 10.1111/j.1365-2427.2009.02196.x CrossRefGoogle Scholar
  23. Kovalenko KE, Thomaz SM, Warfe DM (2012) Habitat complexity: approaches and future directions. Hydrobiologia 658:1–17. doi: 10.1007/s10750-011-0974-z CrossRefGoogle Scholar
  24. Kurle CM, Cardinale BJ (2011) Ecological factors associated with the strength of trophic cascades in streams. Oikos 120:1897–1908. doi: 10.1111/j.1600-0706.2011.19465.x CrossRefGoogle Scholar
  25. Lecerf A, Dobson M, Dang CK, Chauvet E (2005) Riparian plant species loss alters trophic dynamics in detritus-based stream ecosystems. Oecologia 146:432–442PubMedCrossRefGoogle Scholar
  26. Lecerf A, Marie G, Kominoski JS, Leroy CJ, Bernadet C, Swan CM (2011) Incubation time, functional litter diversity, and habitat characteristics predict litter mixing effects on decomposition. Ecology 92:160–169. doi: 10.1890/10-0315.1 PubMedCrossRefGoogle Scholar
  27. Leroux SJ, Loreau M (2008) Subsidy hypothesis and strength of trophic cascades across ecosystems. Ecol Lett 11:1147–1156. doi: 10.1111/j.1461-0248.2008.01235.x PubMedGoogle Scholar
  28. Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626CrossRefGoogle Scholar
  29. Nakagawa S, Cuthill IC (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev 82:591–605. doi: 10.1111/j.1469-185X.2007.00027.x PubMedCrossRefGoogle Scholar
  30. Peckarsky BL, Abrams PA, Bolnick DI, Dill LM, Grabowski JH, Luttbeg B, Orrock JL, Peacor SD, Preisser EL, Schmitz OJ, Trussell GC (2008) Revisiting the classics: considering nonconsumptive effects in textbooks examples of predator prey interactions. Ecology 89:2416–2425. doi: 10.1890/07-1131.1 PubMedCrossRefGoogle Scholar
  31. Polis GA (1999) Why are part of the world green? multiple factors control productivity and the distribution of biomass. Oikos 86:3–15CrossRefGoogle Scholar
  32. Polis GA, Sears ALW, Huxel GR, Strong DR, Maron J (2000) When is a trophic cascade a trophic cascade? Trends Ecol Evol 15:473–475PubMedCrossRefGoogle Scholar
  33. Price PW, Bouton CE, Gross P, McPheron BA, Thompson JN, Weis AE (1980) Interactions among three trophic levels: influence of plants on interactions between insects herbivores and natural ennemies. Annu Rev Ecol Syst 11:41–65. doi: 10.1146/ CrossRefGoogle Scholar
  34. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  35. Reice SR (1991) Effects of detritus loading and fish predation on leafpack breakdown and benthic macroinvertebrates in a woodland stream. J N Am Benthol Soc 10:42–56CrossRefGoogle Scholar
  36. Reiss J, Bridle JR, Montoya JM, Woodward G (2009) Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol Evol 24:505–514. doi: 10.1016/j.tree.2009.03.018 PubMedCrossRefGoogle Scholar
  37. Richardson JS (1992) Food, microhabitat, or both? Macroinvertebrate use of leaf accumulations in a montane stream. Freshw Biol 27:169–176. doi: 10.1111/j.1365-2427.1992.tb00531.x CrossRefGoogle Scholar
  38. Ruetz CR, Breen MJ, Vanhaitsma DL (2006) Habitat structure and fish predation: effects on invertebrate colonisation and breakdown of stream leaf packs. Freshw Biol 51:797–806. doi: 10.1111/j.1365-2427.2006.01525.x CrossRefGoogle Scholar
  39. Sanpera-Calbet I, Lecerf A, Chauvet E (2009) Leaf diversity influences in-stream litter decomposition through effects on shredders. Freshw Biol 54:1671–1682. doi: 10.1111/j.1365-2427.2009.02216.x CrossRefGoogle Scholar
  40. Schmid B, Hector A, Huston MA, Inchausti P, Nijs I, Leadley PW, Tilman D (2002) The design and analysis of biodiversity experiments. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, pp 61–75Google Scholar
  41. Schmitz OJ (2008) Effects of predator hunting mode on grassland ecosystem function. Science 319:952–954. doi: 10.1126/science.1152355 PubMedCrossRefGoogle Scholar
  42. Schmitz OJ, Beckerman AP, O’Brien KM (1997) Behaviorally mediated trophic cascades: effects of predation risk on food web interactions. Ecology 78:1388–1399CrossRefGoogle Scholar
  43. Schmitz OJ, Krivan V, Ovadia O (2004) Trophic cascades: the primacy of trait-mediated indirect interactions. Ecol Lett 7:153–163. doi: 10.1111/j.1461-0248.2003.00560.x CrossRefGoogle Scholar
  44. Shurin JB, Seabloom EW (2005) The strength of trophic cascades across ecosystems: predictions from allometry and energetics. J Anim Ecol 74:1029–1038. doi: 10.1111/j.1365-2656.2005.00999.x CrossRefGoogle Scholar
  45. Shurin JB, Borer ET, Seabloom EW, Anderson K, Blanchette CA, Broitman B, Cooper SD, Halpern BS (2002) A cross-ecosystem comparison of the strength of trophic cascades. Ecol Lett 5:785–791. doi: 10.1046/j.1461-0248.2002.00381.x CrossRefGoogle Scholar
  46. Shurin JB, Gruner JS, Hillebrand H (2006) All wet or dried up? Real differences between aquatic and terrestrial food webs. Proc R Soc Lond B 273:1–9. doi: 10.1098/rspb.2005.3377 CrossRefGoogle Scholar
  47. Strong DR (1992) Are trophic cascades all wet? Differentiation and donnor—control in speciose ecosystems. Ecology 73:747–754. doi: 10.2307/1940154 CrossRefGoogle Scholar
  48. Strong DR, Frank TF (2010) Human involvement in food webs. Annu Rev Environ Resour 35:1–23. doi: 10.1146/annurev-environ-031809-133103 CrossRefGoogle Scholar
  49. Swan CM, Palmer MA (2004) Leaf diversity alters litter breakdown in a piedmont stream. J N Am Benthol Soc 23:15–28. doi: 10.1899/0887-3593(2004)023 CrossRefGoogle Scholar
  50. Swan CM, Palmer MA (2006) Preferential feeding by an aquatic consumer mediates non-additive decomposition of speciose leaf litter. Oecologia 149:107–114. doi: 10.1007/s00442-006-0436-x PubMedCrossRefGoogle Scholar
  51. Tachet H, Richoux P, Bournard M, Usseglio-Polatera P (2000) Invertébrés d’eau douce : systématique, biologie, écologie. CNRS Edition, ParisGoogle Scholar
  52. Terborgh J, Estes JA (2010) Trophic cascades — predators, prey, and the changing dynamics of nature. Island Press, WashingtonGoogle Scholar
  53. Waringer J, Graf W (1997) Atlas der österreichischen Köcherfliegenlarven. Facultas Universitätsverlag, WienGoogle Scholar
  54. Werner EA, Peacor SD (2003) A review of trait-mediated indirect interactions in ecological communities. Ecology 84:1083–1100. doi: 10.1890/0012-9658(2003)084 CrossRefGoogle Scholar
  55. Woodward G, Hildrew AG (2002) The impact of a sit-and-wait predator: separating consumption and prey emigration. Oikos 99:409–418. doi: 10.1034/j.1600-0706.2002.11210.x CrossRefGoogle Scholar
  56. Woodward G, Papantoniou G, Edwards F, Lauridsen RB (2008) Trophic trickles and cascades in a complex food web: impacts of a keystone predator on stream community structure and ecosystem processes. Oikos 117:683–692. doi: 10.1111/j.0030-1299.2008.16500.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jérémy Jabiol
    • 1
    • 2
  • Julien Cornut
    • 3
    • 4
  • Michaël Danger
    • 3
    • 4
  • Marion Jouffroy
    • 1
    • 2
  • Arnaud Elger
    • 1
    • 2
  • Eric Chauvet
    • 1
    • 2
  1. 1.Université de Toulouse, UPS, INPTEcoLab (Laboratoire Ecologie Fonctionnelle et Environnement)ToulouseFrance
  2. 2.CNRSEcoLabToulouseFrance
  3. 3.LIEC, UMR 7360Université de LorraineMetzFrance
  4. 4.LIEC, UMR 7360CNRSMetzFrance

Personalised recommendations