Advertisement

Oecologia

, Volume 175, Issue 4, pp 1301–1313 | Cite as

Temporal dynamics of bird community composition: an analysis of baseline conditions from long-term data

  • Christian Kampichler
  • David G. Angeler
  • Richard T. Holmes
  • Aivar Leito
  • Sören Svensson
  • Henk P. van der Jeugd
  • Tomasz Wesołowski
Community ecology - Original research

Abstract

Numerous anthropogenic activities threaten the biodiversity found on earth. Because all ecological communities constantly experience temporal turnover due to natural processes, it is important to distinguish between change due to anthropogenic impact and the underlying natural rate of change. In this study, we used data sets on breeding bird communities that covered at least 20 consecutive years, from a variety of terrestrial ecosystems, to address two main questions. (1) How fast does the composition of bird communities change over time, and can we identify a baseline of natural change that distinguishes primeval systems from systems experiencing varying degrees of human impact? (2) How do patterns of temporal variation in composition vary among bird communities in ecosystems with different anthropogenic impacts? Time lag analysis (TLA) showed a pattern of increasing rate of temporal compositional change from large-scale primeval systems to disturbed and protected systems to distinctly successional systems. TLA slopes of <0.04 were typical for breeding bird communities with natural turnover, while communities subjected to anthropogenic impact were characterised by TLA slopes of >0.04. Most of the temporal variability of breeding bird communities was explained by slow changes occurring over decades, regardless of the intensity of human impact. In most of the time series, medium- and short-wave periodicity was not detected, with the exception of breeding bird communities subjected to periodic pulses (e.g. caterpillar outbreaks causing food resource peaks).

Keywords

Community dynamics Long-term datasets Periodicity Primeval forests Time lag analysis Time series 

Notes

Acknowledgments

Our thanks to the Vogelwerkgroep Meijendel (in particular to J.C.P. Westgeest) who placed the data from the Meijendel Dunes, The Netherlands, at our disposal, and to H. de Nie and G. Sanders for providing their data from Mastbos and Hoekelum Manor, respectively. Research on the bird community at the Hubbard Brook site was funded by grants from the US National Science Foundation and the data are available at http://www.hubbardbrook.org. We are grateful to Anders Enemar for comments on an earlier version of the manuscript. This is NIOO publication 5622.

Supplementary material

442_2014_2979_MOESM1_ESM.pdf (562 kb)
Supplementary material 1 (PDF 561 kb)
442_2014_2979_MOESM2_ESM.pdf (1.2 mb)
Supplementary material 2 (PDF 1209 kb)
442_2014_2979_MOESM3_ESM.pdf (117 kb)
Supplementary material 3 (PDF 117 kb)
442_2014_2979_MOESM4_ESM.pdf (69 kb)
Supplementary material 4 (PDF 68 kb)
442_2014_2979_MOESM5_ESM.pdf (205 kb)
Supplementary material 5 (PDF 205 kb)
442_2014_2979_MOESM6_ESM.pdf (355 kb)
Supplementary material 6 (PDF 355 kb)
442_2014_2979_MOESM7_ESM.pdf (335 kb)
Supplementary material 7 (PDF 334 kb)

References

  1. Angeler DG, Johnson RK (2012) Temporal scales and patterns of invertebrate biodiversity dynamics in boreal lakes recovering from acidification. Ecol Appl 22:1172–1186. doi: 10.1890/11-1474.1 CrossRefPubMedGoogle Scholar
  2. Angeler DG, Moreno JM (2007) Zooplankton community resilience after press-type anthropogenic stress in temporary ponds. Ecol Appl 17:1105–1115. doi: 10.1890/06-1040 CrossRefPubMedGoogle Scholar
  3. Angeler DG, Viedma O, Moreno JM (2009) Statistical performance and information content of time lag analysis and redundancy analysis in time series modelling. Ecology 90:3245–3257. doi: 10.1890/07-0391.1 CrossRefPubMedGoogle Scholar
  4. Angeler DG, Drakare S, Johnson RK (2011) Revealing the organization of complex adaptive systems through multivariate time series modeling. Ecol Soc 16(3):5. doi: 10.5751/ES-04175-160305 Google Scholar
  5. Beven G (1976) Changes in breeding bird populations of an oak-wood on Bookham Common, Surrey, over twenty-seven years. Lond Nat 55:23–42Google Scholar
  6. Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68. doi: 10.1016/S0304-3800(01)00501-4 CrossRefGoogle Scholar
  7. Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology 85:1826–1832. doi: 10.1890/03-3111 CrossRefGoogle Scholar
  8. Canterbury GE, Martin TE, Petit DR, Petit LJ, Bradford DF (2000) Bird communities and habitat as ecological indicators for forest condition in regional monitoring. Conserv Biol 14:544–558CrossRefGoogle Scholar
  9. Carpenter SR, Brock WA (2006) Rising variance: a leading indicator of ecological transition. Ecol Lett 9:311–318. doi: 10.1111/j.1461-0248.2005.00877.x CrossRefPubMedGoogle Scholar
  10. Collins SL (2001) Long-term research and the dynamics of bird populations and communities. Auk 118:583–588. doi:10.1642/0004-8038(2001)118[0583:LTRATD]2.0.CO;2CrossRefGoogle Scholar
  11. Collins SL, Micheli F, Hartt L (2000) A method to determine rates and patterns of variability in ecological communities. Oikos 91:285–293CrossRefGoogle Scholar
  12. Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332:53–58. doi: 10.1126/science.1200303
  13. Diamond JM, May RM (1977) Species turnover rates on islands: dependence on census interval. Science 197:266–270CrossRefPubMedGoogle Scholar
  14. Drapeau P, Leduc A, Giroux J-FO, Savard J-PL, Bergeron Y, Vickery WL (2000) Landscape-scale disturbances and changes in bird communities of boreal mixed-wood forests. Ecol Monogr 70:423–444CrossRefGoogle Scholar
  15. Dray S (2009) pack for: forward selection with permutation (Canoco p.46). R-package version 0.0-7/r58 (with contributions of Pierre Legendre and Guillaume Blanchet). http://R-Forge.R-project.org/projects/sedar/
  16. Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22(4):1–20Google Scholar
  17. Enemar A (1966) A ten-year study on the size and composition of a breeding passerine bird community. Vår Fågelvärld (Suppl) 4:47–49Google Scholar
  18. Enemar A, Cavallin B, Nyholm E, Rudebeck I, Thorner AM (1994) Dynamics of a passerine bird community in a small deciduous wood, S Sweden, during 40 years. Ornis Svecica 4:65–104Google Scholar
  19. Enemar A, Sjöstrand B, Andersson G, von Proschwitz T (2004) The 37-year dynamics of a subalpine passerine bird community, with special emphasis on the influence of environmental temperature and Epirrita autumnata cycles. Ornis Svecica 14:63–106Google Scholar
  20. Franklin JF (1989) Importance, justification of long-term studies in ecology. In: Likens GE (ed) Long-term studies in ecology. Springer, Berlin, pp 3–19Google Scholar
  21. Haffer J (1985a) Troglodytidae—Zaunkönige. In: Glutz von Blotzheim UN (ed) Handbuch der Vögel Mitteleuropas, vol 10/II. Aula-Verlag, Wiesbaden, pp 1021–1060Google Scholar
  22. Haffer J (1985b) Phylloscopus collybita—Zilpzalp, Weidenlaubsänger. In: Glutz von Blotzheim UN (ed) Handbuch der Vögel Mitteleuropas, vol 12/II. Aula-Verlag, Wiesbaden, pp 1232–1292Google Scholar
  23. Hall GA (1984) A long-term bird population study in an Appalachian spruce forest. Wilson Bull 96:228–240Google Scholar
  24. Hansen AJ, McComb WC, Vega R, Raphael MG, Hunter M (1995) Bird habitat relationships in natural and managed forests in the West Cascades of Oregon. Ecol Appl 5:555–569CrossRefGoogle Scholar
  25. Hillebrand H, Soininen J, Snoeijs P (2010) Warming leads to higher species turnover in a coastal ecosystem. Glob Change Biol 16:1181–1193. doi: 10.1111/j.1365-2486.2009.02045.x CrossRefGoogle Scholar
  26. Hobson KA, Schieck J (1999) Changes in bird communities in boreal mixed wood forest: harvest and and wildfire effects over 30 years. Ecol Appl 9:849–863CrossRefGoogle Scholar
  27. Holmes RT (1990) The structure of a temperate deciduous forest bird community: variability in time and space. In: Keast A (ed) Biogeography and ecology of forest bird communities. SPB Academic, The Hague, pp 121–139Google Scholar
  28. Holmes RT (2011) Avian population and community processes in forest ecosystems: long-term research in the Hubbard Brook experimental forest. For Ecol Manage 262:20–32. doi: 10.1016/j.foreco.2010.06.021 CrossRefGoogle Scholar
  29. Holmes RT, Sherry TW (2001) Thirty-year bird population trends in an unfragmented temperate deciduous forest: importance of habitat change. Auk 118:589–609CrossRefGoogle Scholar
  30. Holmes RT, Sturges FW (1975) Bird community dynamics and energetics in a northern hardwoods ecosystem. J Anim Ecol 45:175–200Google Scholar
  31. Holmes RT, Sherry TW, Sturges FW (1986) Bird community dynamics in a temperate deciduous forest: long-term trends at Hubbard Brook. Ecol Monogr 56:201–220 CrossRefGoogle Scholar
  32. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, PrincetonGoogle Scholar
  33. Jansen PB, de Nie HW (1986) Dertig jaar zangvogelinventarisatie in het Mastbos bij Breda. Limosa 59:127–134Google Scholar
  34. Kampichler C, van der Jeugd HP (2013) Determining patterns of variability in ecological communities: time lag analysis revisited. Ecol Environ Stat 20:271–284. doi: 10.1007/s10651-012-0219-y CrossRefGoogle Scholar
  35. Kendeigh SC (1982) Bird populations in East Central Illinois: fluctuations, variations, and development over a half-century. University of Illinois Press, ChampaignCrossRefGoogle Scholar
  36. Korhonen JJ, Soininen J, Hillebrand H (2010) A quantitative analysis of temporal turnover in aquatic species assemblages across ecosystems. Ecology 91:508–517. doi: 10.1890/09-0392.1 CrossRefPubMedGoogle Scholar
  37. Lack D (1969) Population changes in the land birds of a small island. J Anim Ecol 38:211–218CrossRefGoogle Scholar
  38. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280CrossRefGoogle Scholar
  39. Legg CJ, Nagy L (2006) Why most conservation monitoring is, but need not be, a waste of time. J Environ Manage 78:194–198. doi: 10.1016/j.jenvman.2005.04.016 CrossRefPubMedGoogle Scholar
  40. Leito A, Truu J, Roosaluste E, Sepp K, Põder I (2006) Long-term dynamics of breeding birds in broad-leaved deciduous forest on Hanikatsi Island in the West-Estonian archipelago. Ornis Fenn 83:124–130Google Scholar
  41. Lindenmayer DB, Likens GE (2010) The science and application of ecological monitoring. Biol Conserv 143:1317–1328. doi: 10.1016/j.biocon.2010.02.013 CrossRefGoogle Scholar
  42. Magurran AE, Baillie SR, Buckland ST, Dick JM, Elston DA, Scott EM, Smith RI, Somerfield PJ, Watt AD (2010) Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends Ecol Evol 25:574–582. doi: 10.1016/j.tree.2010.06.016 CrossRefPubMedGoogle Scholar
  43. Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens HH, Wagner H (2010) vegan: community ecology package. R package version 1.17-2. http://CRAN.R-project.org/package=vegan
  44. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290. doi: 10.1093/bioinformatics/btg412 CrossRefPubMedGoogle Scholar
  45. Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JPW, Fernandez-Manjarrés JF, Araújo MB, Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guénette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501. doi: 10.1126/science.1196624 CrossRefPubMedGoogle Scholar
  46. Piotrowska M, Wesołowski T (1989) The breeding ecology and behaviour of the Chiffchaff Phylloscopus collybita in primaeval and managed stands of Białowieża Forest (Poland). Acta Ornithologica 25:25–76Google Scholar
  47. R Development Core Team (2011) R: a language and environment for statistical computing. http://www.R-project.org
  48. Sanders G, Vrielink J, Kwikkel HJ, Ens S, Leys H (2001) De in de periode 1958–2000. Pennevluchten 19:71–87Google Scholar
  49. Sauer J, Hines J, Fallon J (2008) The North American Breeding Bird Survey, results and analysis 1966–2007. USGS Patuxent Wildlife Research Center, LaurelGoogle Scholar
  50. Sodhi NS, Ehrlich PR (2010) Conservation biology for all. Oxford University Press, OxfordCrossRefGoogle Scholar
  51. Steel EA, Kennedy MC, Cunningham PG, Stanovick JS (2013) Applied statistics in ecology: common pitfalls and simple solutions. Ecosphere 4:115. doi: 10.1890/ES13-00160.1 CrossRefGoogle Scholar
  52. Svensson S (2006) Species composition and population fluctuations of alpine bird communities during 38 years in the Scandinavian mountain range. Ornis Svecica 16:183–210Google Scholar
  53. Svensson S, Carlsson UT, Liljedahl G (1984) Structure and dynamics of an alpine bird community, a 20-year study. Ann Zool Fenn 21:339–350Google Scholar
  54. Svensson S, Thorner AM, Nyholm NEI (2010) Species trends, turnover and composition of a woodland bird community in southern Sweden during a period of fifty-seven years. Ornis Svecica 20:31–44Google Scholar
  55. Thibault KM, White EP, Ernest SKM, White EP, Brown JH, Goheen JR (2004) Temporal dynamics in the structure and composition of a desert rodent community. Ecology 85:2649–2655. doi: 10.1890/04-0321 CrossRefGoogle Scholar
  56. Tiainen J (1985) Phylloscopus trochilus—Fitis, Fitislaubsänger. In: Glutz von Blotzheim UN (ed) Handbuch der Vögel Mitteleuropas, vol 12/II. Aula-Verlag, Wiesbaden, pp 1293–1357Google Scholar
  57. Tomiałojć L, Wesołowski T (1994) Die Stabilität der Vogelgemeinschaft in einem Urwald der gemässigten Zone: ergebnisse einer 15jährigen Studie aus dem Nationalpark von Białowieża (Polen). Ornithologischer Beobachter 91:73–110Google Scholar
  58. Tomiałojć L, Wesołowski T (1996) Structure of a primaeval forest bird community during 1970s and 1990s (Białowieża National Park, Poland). Acta Ornithol 31:133–154Google Scholar
  59. Tomiałojć L, Wesołowski T, Walankiewicz W (1984) Breeding bird community of a primaeval temperate forest (Białowieża National Park, Poland). Acta Ornithol 20:241–310Google Scholar
  60. van Ommering G, van der Salm JNC (1990) Ontwikkelingen in de broedvogelbevolking van Meijendel. Mededeling van het Meijendel Comité, New Series 115. Bureau Duin + Kust, LeidenGoogle Scholar
  61. Wesołowski T (2011) Blackcap Sylvia atricapilla numbers, phenology and reproduction in a primeval forest—a 33-year study. J Ornithol 152:319–329. doi: 10.1007/s10336-010-0585-x
  62. Wesołowski T, Cholewa M (2009) Climate variation and birds’ breeding seasons in a primeval temperate forest. Clim Res 38:199–208CrossRefGoogle Scholar
  63. Wesołowski T, Rowiński P (2012) The breeding performance of Blue Tits Cyanistes caeruleus in relation to the attributes of natural holes in a primeval forest. Bird Study 59:437–448CrossRefGoogle Scholar
  64. Wesołowski T, Tomiałojć L (1997) Breeding bird dynamics in a primaeval temperate forest: long-term trends in Białowieża National Park (Poland). Ecography 20:432–453CrossRefGoogle Scholar
  65. Wesołowski T, Tomiałojć L, Mitrus C, Rowiński P, Czeszczewik D (2002) Breeding bird community of a primaeval temperate forest (Białowieża National Park, Poland) at the end of 20th century. Acta Ornithol 37:27–45Google Scholar
  66. Wesołowski T, Rowiński P, Mitrus C, Czeszczewik D (2006) Breeding bird community of a primeval temperate forest (Białowieża National Park, Poland) at the beginning of the 21st century. Acta Ornithol 41:55–70. doi: 10.3161/000164506777834714
  67. Wesołowski T, Rowiński P, Maziarz M (2009) Wood warbler Phylloscopus sibilatrix—a nomadic insectivore in search of safe breeding grounds? Bird Study 56:26–33. doi: 10.1080/00063650802681540 CrossRefGoogle Scholar
  68. Wesołowski T, Mitrus C, Czeszczewik D, Rowiński P (2010) Breeding bird dynamics in a primeval temperate forest over thirty-five years: variation and stability in the changing world. Acta Ornithol 45:209–232. doi: 10.3161/000164510X551354
  69. Wiens JA (1989) The ecology of bird communities, vol 2. Cambridge University Press, CambridgeCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Christian Kampichler
    • 1
    • 2
    • 3
  • David G. Angeler
    • 4
  • Richard T. Holmes
    • 5
  • Aivar Leito
    • 6
  • Sören Svensson
    • 7
  • Henk P. van der Jeugd
    • 2
  • Tomasz Wesołowski
    • 8
  1. 1.Sovon Dutch Centre for Field OrnithologyNijmegenThe Netherlands
  2. 2.Vogeltrekstation—Dutch Centre for Avian Migration and Demography, NIOO-KNAWWageningenThe Netherlands
  3. 3.División de Ciencias BiológicasUniversidad Juárez Autónoma de TabascoVillahermosaMexico
  4. 4.Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden
  5. 5.Department of Biological SciencesDartmouth CollegeHanoverUSA
  6. 6.Institute of Agricultural and Environmental SciencesEstonian Agricultural UniversityTartuEstonia
  7. 7.Department of EcologyLund UniversityLundSweden
  8. 8.Laboratory of Forest BiologyWrocław UniversityWrocławPoland

Personalised recommendations