Skip to main content

Advertisement

Log in

Ecological drivers of guanaco recruitment: variable carrying capacity and density dependence

  • Population ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Ungulates living in predator-free reserves offer the opportunity to study the influence of food limitation on population dynamics without the potentially confounding effects of top-down regulation or livestock competition. We assessed the influence of relative forage availability and population density on guanaco recruitment in two predator-free reserves in eastern Patagonia, with contrasting scenarios of population density. We also explored the relative contribution of the observed recruitment to population growth using a deterministic linear model to test the assumption that the studied populations were closed units. The observed densities increased twice as fast as our theoretical populations, indicating that marked immigration has taken place during the recovery phase experienced by both populations, thus we rejected the closed-population assumption. Regarding the factors driving variation in recruitment, in the low- to medium-density setting, we found a positive linear relationship between recruitment and surrogates of annual primary production, whereas no density dependence was detected. In contrast, in the high-density scenario, both annual primary production and population density showed marked effects, indicating a positive relationship between recruitment and per capita food availability above a food-limitation threshold. Our results support the idea that environmental carrying capacity fluctuates in response to climatic variation, and that these fluctuations have relevant consequences for herbivore dynamics, such as amplifying density dependence in drier years. We conclude that including the coupling between environmental variability in resources and density dependence is crucial to model ungulate population dynamics; to overlook temporal changes in carrying capacity may even mask density dependence as well as other important processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alcaraz-Segura D, Cabello J, Paruelo JM, Delibes M (2009) Use of descriptors of ecosystem functioning for monitoring a national park network: a remote sensing approach. Environ Manage 43:38–48

    Article  PubMed  Google Scholar 

  • Alonso Roldán V (2012) Patrones de distribución espacial de la mara (Dolichotis patagonum) a distintas escalas. Doctoral thesis, Universidad Nacional del Sur, Bahía Blanca

  • Amaya JN, von Thüngen J (2001) Cría de guanacos en semicautividad. Informe técnico RN no. 114. INTA-EEA, Bariloche

  • Baldi R, Albon SD, Elston DA (2001) Guanacos and sheep: evidence for continuing competition in arid Patagonia. Oecologia 129:561–570

    Article  CAS  PubMed  Google Scholar 

  • Baldi R et al. (2006) Plan nacional de manejo del guanaco (Lama guanicoe). Secretaría de Ambiente y Desarrollo Sustentable de la Nación, República Argentina

    Google Scholar 

  • Beeskow AM, Del Valle HF, Rostagno CM (1987) Los sistemas fisiográficos de la región árida y semiárida de la Provincia de Chubut. Publicación Especial Secretaría de Ciencia y Técnica, Argentina

    Google Scholar 

  • Beldomenico PM, Uhart M, Bonoa MF, Marull C, Baldi R, Peralta JL (2003) Internal parasites of free-ranging guanacos from Patagonia. Vet Parasitol 118:71–78

    Article  CAS  PubMed  Google Scholar 

  • Bonenfant C et al. (2009) Empirical evidence of density-dependence in populations of large herbivores. Adv Ecol Res 41

  • Bonenfant C, Gaillard JM, Klein F, Hamann J (2005) Can we use the young:female ratio to infer ungulate population dynamics? An empirical test using red deer Cervus elaphus as a model. J Appl Ecol 42:361–370

    Article  Google Scholar 

  • Buckland ST, Anderson DR, Burnham KP, Laake JL (1993) Distance sampling: estimating abundance of biological populations. Chapman & Hall, London

    Book  Google Scholar 

  • Burgi V (2005) Radio de acción y uso de hábitat en hembras de guanaco (Lama guanicoe) en el NE de Chubut. Universidad Nacional de la Patagonia, Puerto Madryn

    Google Scholar 

  • Burgi M (2007) Radio de acción del guanaco (Lama guanicoe) en el NE de Chubut. Mastozool Neotrop 14:285–291

    Google Scholar 

  • Burgi M, Marino A, Rodríguez V, Pazos G, Baldi R (2012) Response of guanacos to changes in land management in Península Valdés Argentine Patagonia. Conservation implications. Oryx 46:99–105

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference. Springer, Berlin

    Google Scholar 

  • Burnham KP, Anderson DR, Huyvaert KP (2010) AICc model selection in ecological and behavioral science: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35

    Article  Google Scholar 

  • Campanella MV, Bertiller MB (2008) Plant phenology, leaf traits, and leaf litterfall of contrasting life forms in the arid Patagonian Monte, Argentina. J Veg Sci 19:75–85

    Article  Google Scholar 

  • Cévoli SR (2005) Dinámica de la población de guanacos (Lama guanicoe, Müller) de la reserva Cabo Dos Bahías. Chubut Facultad de Ciencias Naturales Universidad Nacional de la Patagonia, Puerto Madryn

    Google Scholar 

  • Clutton-Brock TH, Guinness FE, Albon SD (1982) Red deer: behaviour and ecology of two sexes. University of Chicago Press, Chicago

    Google Scholar 

  • Codesido M, Beeskow AM, Blanco P, Johnson A (2005) Relevamiento ambiental de la Reserva de Vida Silvestre San Pablo de Valdés. FVSA-CENPAT, Puerto Madryn

    Google Scholar 

  • Coulson T, Milner-Gulland EJ, Clutton-Brock T (2000) The relative roles of density and climatic variation on population dynamics and fecundity rates in three contrasting ungulate species. Trends Ecol Evol 267:1771–1779

    CAS  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, Chichester

    Book  Google Scholar 

  • De Lamo D, Saba S (1990) Estructura demográfica de una población de guanacos del suroeste de Chubut Patagonia. Agropecuaria 6:26–27

  • De Lamo DA, Garrido JL, Kovacs Z (1982) Población y parámetros reproductivos del guanaco Contribución 64. Centro Nacional Patagónico, Chubut, Argentina

    Google Scholar 

  • Fowler CW (1987) A review of density dependence in populations of large mammals. Curr Mammal 1:401–441

    Article  Google Scholar 

  • Franklin WL (1975) Guanacos in Perú. Oryx 13:191–202

    Article  Google Scholar 

  • Franklin WL (1983) Contrasting socioecologies of South America’s wild camelids: the vicuña and the guanaco, 7th edn. American Society of Mammalogy special publication, USA, pp 573–628

    Google Scholar 

  • Franklin WL, Fritz M (1991) Sustained harvesting of the Patagonia guanaco: is it possible or too late? In: Robinson JG, Redford KH (eds) Neotropical wildlife use and conservation, pp 317–336

  • Fritz MA (1985) Population dynamics and preliminary estimates of the harvestability of the Patagonian guanaco. MSc thesis, University of Iowa

    Google Scholar 

  • Fritz MA, Franklin WL (1994) First estimates of guanaco male group harvestability in the Patagonia of South America. Vida Silv Neotrop 3:84–90

    Google Scholar 

  • Gaillard JM, Festa-Bianchet M, Yoccoz NG (1998) Population dynamics of large herbivores: variable recruitment with constant adult survival. Trends Ecol Evol 13:58–63

    Article  CAS  PubMed  Google Scholar 

  • Gaillard JM, Festa-Bianchet M, Yoccoz NG, Loison A, Toïgo C (2000) Temporal variation in fitness components and population dynamics of large herbivores. Annu Rev Ecol Evol Syst 31:367–393

    Article  Google Scholar 

  • Jobbágy EG, Sala OE, Paruelo JM (2002) Patterns and controls of primary productionin the Patagonian steeppe: a remote sensing approach. Ecology 83:307–319

    Google Scholar 

  • Jonzén N, Pople AR, Grigg GC, Possingham HP (2005) Of sheep and rain: large-scale population dynamics of the red kangaroo. J Anim Ecol 74:22–30

    Article  Google Scholar 

  • Marino A (2012) Indirect measures of reproductive effort in a resource-defense polygynous ungulate: territorial defense by male guanacos. J Ethol 30:83–91

    Article  Google Scholar 

  • Marino A, Baldi R (2014) Ecological correlates of group-size variation in a resource-defense ungulate, the sedentary guanaco. PLoS One 9(2):e89060. doi:10.1371/journal.pone.0089060

    Article  PubMed Central  PubMed  Google Scholar 

  • McCullough DR (1999) Density dependence and life-history strategies of ungulates. J Mammal 80:1130–1146

    Article  Google Scholar 

  • Mitchell B, Brown D (1974) The effects of age and body size on fertility in female red deer (Cervus elaphus L.). Proc Int Congr Game Biol 11:89–98

    Google Scholar 

  • Mohr Bell D, Siebert A (2008) Monitoreo de la sequía en la Provincia de Chubut. CIEFAP, Esquel

    Google Scholar 

  • Nasa LPDAAC (2013) MODIS land products quality assurance tutorial. Part 2. How to interpret and use MODIS QA information in the vegetation indices product suite. USGS EROS Center, Sioux Falls

    Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51

    Article  Google Scholar 

  • Pettorelli N, Olav Vik J, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20:503–510

    Article  PubMed  Google Scholar 

  • Pierce BM, Bleich VC, Monteith KL, Bowyer RT (2012) Top-down versus bottom-up forcing: evidence from mountain lions and mule deer. J Mammal 93:977–988

    Article  Google Scholar 

  • Pirronitto A (2011) Abundancia del choique (rhea pennata pennata) en el centro-este de la Patagonia. Tesis de Licenciatura, UNPSJB

    Google Scholar 

  • Pople T, Grigg G (1999) Commercial harvesting of kangaroos in Australia. Department of Zoology, The University of Queensland, for Environment Australia

  • Puig S (1986) Ecología poblacional del guanaco en la Reserva La Payunia Mendoza. Universidad de Buenos Aires, Buenos Aires, Argentina

    Google Scholar 

  • Raedeke KJ (1979) Population dynamics and socioecology of the guanaco (Lama guanicoe) of Magallanes. University of Washington, Seattle, Chile

    Google Scholar 

  • Reed BC, Brown JF, VanderZee D, Loveland TR, Merchant JW, Ohlen DO (1994) Measuring phenological variability from satellite imagery. J Veg Sci 5:703–714

    Article  Google Scholar 

  • Rey A, Novaro AJ, Guichón ML (2012) Guanaco (Lama guanicoe) mortality by entanglement in wire fences. J Nat Conserv 20:280–283

    Article  Google Scholar 

  • Sarno RJ, Franklin WL (1999) Population density and annual variation in birth mass of guanacos in Southern Chile. J Mammal 80:1158–1162

    Article  Google Scholar 

  • Sarno RJ, et al. (1999) Juvenile guanaco survival: management and conservation implications. J Appl Ecol 36:937–945

    Article  Google Scholar 

  • Sarno RJ, Bank MS, Stern HS, Franklin WL (2003) Forced dispersal of juvenile guanacos (Lama guanicoe): causes, variation, and fates of individuals dispersing at different times. Behav Ecol Sociobiol 54:22–29

    Article  Google Scholar 

  • Shaw AK, Galaz JL, Marquet PA (2012) Population dynamics of the vicuña (Vicugna vicugna): density-dependence, rainfall, and spatial distribution. J Mammal 93:658–666

    Article  Google Scholar 

  • Sinclair ARE, Dublin H, Borner M (1985) Population regulation of Serengeti wildebeest: a test of the food hypothesis. Oecologia 65:266–268

    Article  Google Scholar 

  • Solano R, Didan K, Jacobson AR, Huete A (2010) MODIS vegetation index user’s guide (MOD13 series). University of Arizona, Vegetation Index and Phenology Lab

    Google Scholar 

  • Tucker CJ, Sellers PJ (1986) Satellite remote-sensing of primary production. Int J Remote Sens 7:1395–1416

    Article  Google Scholar 

Download references

Acknowledgments

We thank Andrés Johnson, Marcela Nabte, Victoria Rodriguez, Virginia Burgi, Alejo Irigoyen, Laura Lamuedra, Gustavo Pazos, Cynthia Fernández, Esteban Bremen, Cristian Pertersen, Lucas Andreani, Rafael Lorenzo, Lucía Castillo and Isaí Madriz for their support during field work; Sebastián Cévoli for his pioneering work at Cabo Dos Bahías; Martín García-Asorey for his help with data analysis; three anonymous reviewers who considerably improved the manuscript; Alejandro Arias and the Fundación Vida Silvestre Argentina, Centro Nacional Patagónico and Consejo Nacional de Investigaciones Científicas y Técnicas for logistic support. Field work at Cabo Dos Bahías during the 2001–2006 period was supported by the Wildlife Conservation Society and the Dirección de Áreas Protegidas de la Provincia de Chubut. Field work since 2006 was possible thanks to the financial support provided by the Rufford Small Grant Foundation and HSBC. Fieldwork permits were granted by the Dirección de Conservación y Áreas Protegidas y Dirección de Flora y Fauna de la Provincia de Chubut.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Marino.

Additional information

Communicated by Jean-Michel Gaillard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marino, A., Pascual, M. & Baldi, R. Ecological drivers of guanaco recruitment: variable carrying capacity and density dependence. Oecologia 175, 1189–1200 (2014). https://doi.org/10.1007/s00442-014-2965-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-2965-z

Keywords

Navigation