, Volume 175, Issue 3, pp 835–845 | Cite as

Elevational differences in trait response to UV-B radiation by long-toed salamander populations

  • Lindsey L. Thurman
  • Tiffany S. Garcia
  • Peter D. Hoffman
Behavioral ecology - Original research


Amphibian species capable of optimizing trait response to environmental stressors may develop complex strategies for defending against rapid environmental change. Trait responses may differ between populations, particularly if stressor strength varies across spatial or temporal gradients. Ultraviolet-B (UV-B) radiation is one such stressor that poses a significant threat to amphibian species. We examined the ability of long-toed salamanders (Ambystoma macrodactylum) at high- and low-elevation breeding sites to cooperatively employ behavioral and physiological trait responses to mediate UV-B damage. We performed a microhabitat survey to examine differences in oviposition behavior and UV-B conditions among breeding populations at high- (n = 3; >1,500 m) and low-elevation (n = 3; <100 m) sites. We found significant differences in oviposition behavior across populations, with females at high-elevation sites selecting oviposition substrates in UV-B protected microhabitats. We also collected eggs (n = 633) from each of the breeding sites for analysis of photolyase activity, a photoreactivating enzyme that repairs UV-B damage to the DNA, using a photoproduct immunoassay. Our results revealed no significant differences in photolyase activity between long-toed salamander populations at high and low elevations. For high-elevation salamander populations, relatively low physiological repair capabilities in embryos appear to be buffered by extensive behavioral modifications to reduce UV-B exposure and standardize developmental temperatures. This study provides valuable insight into environmental stress responses via the assessment of multiple traits in allowing sensitive species to persist in rapidly changing landscapes.


Amphibian Photolyase Oviposition Behavior Ultraviolet radiation 



We would like to thank the John Hays Laboratory in the Department of Environmental and Molecular Toxicology at Oregon State University for their extensive assistance in the laboratory analysis portion of this project. We thank L. Ganio, K. Dugger, and J. Van Sickle for assistance with statistical analyses and the Willamette Valley National Wildlife Refuge Complex and US Forest Service for site access. We thank D.T. Thurman and S.K. McMurrain for their invaluable contributions. This study was funded by scholarship stipends from The Society for Northwestern Vertebrate Biology, Oregon State University Department of Fisheries and Wildlife, and Oregon State University College of Agricultural Sciences. Animals were collected under Oregon Department of Fisheries and Wildlife Scientific Taking Permit no. 078-10, US Fish and Wildlife Service Special Use Permit no. 13590-11-02, E.E. Wilson Management Area Special Use Permit no. 1513, and Oregon State University Animal Care and Use Protocol no. 3978.


  1. Adams M, Hossack B, Knapp R, Corn P, Diamond S, Trenham P, Fagre D (2005) Distribution patterns of lentic-breeding amphibians in relation to ultraviolet radiation exposure in Western North America. Ecosystems 8:488–500. doi: 10.1007/s10021-003-0033-3 CrossRefGoogle Scholar
  2. Alton L, Wilson R, Franklin C (2010) Risk of predation enhances the lethal effects of UV-B in amphibians. Glob Change Biol 16:538–545. doi: 10.1111/j.1365-2486.2009.02010.x CrossRefGoogle Scholar
  3. Bancroft B, Baker N, Blaustein A (2007) Effects of UVB radiation on marine and freshwater organisms: a synthesis through meta-analysis. Ecol Lett 10:332–345. doi: 10.1111/j.1461-0248.2007.01022.x PubMedCrossRefGoogle Scholar
  4. Bancroft BA, Baker NJ, Searle CA, Garcia TS, Blaustein AR (2008) Larval amphibians seek warm temperatures and do not avoid harmful UVB radiation. Behav Ecol 19(4):879–886. doi: 10.1093/beheco/arn044 CrossRefGoogle Scholar
  5. Belden L, Blaustein A (2002) Population differences in sensitivity to UV-B radiation in larval long-toed salamanders. Ecology 83(6):1586–1590. doi: 10.1046/j.1523-1739.2002.t01-1-02109.x CrossRefGoogle Scholar
  6. Belden LK, Wildy EL, Blaustein AR (2000) Growth, survival, and behavior of larval long-toed salamanders (Ambystoma macrodactylum) exposed to ambient levels of UV-B radiation. J Zool 251:473–479. doi: 10.1111/j.1469-7998.2000.tb00803.x CrossRefGoogle Scholar
  7. Blaustein AR, Bancroft BA (2007) Amphibian population declines: evolutionary considerations. Bioscience 57(5):437–444. doi: 10.1641/B570517 CrossRefGoogle Scholar
  8. Blaustein A, Belden L (2003) Amphibian defenses against ultraviolet-B radiation. Evol Devel 5(1):89–97. doi: 10.1046/j.1525-142X.2003.03014.x CrossRefGoogle Scholar
  9. Blaustein AR, Hoffman PD, Hokit GD, Kiesecker JK, Walls SC, Hays JB (1994) UV repair and resistance to solar UV-B in amphibian eggs: a link to population declines? Proc Natl Acad Sci 91:1791–1795. doi: 10.1073/pnas.91.5.1791 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Blaustein AR, Edmond B, Kiesecker JK, Beatty JJ, Hokit DG (1995) Ambient ultraviolet radiation causes mortality in salamander eggs. Ecol App 5(3):740–743. doi: 10.2307/1941981 CrossRefGoogle Scholar
  11. Blaustein AR, Hoffman PD, Kiesecker JM, Hays JB (1996) DNA repair and activity and resistance to solar UV-B radiation in eggs of the red-legged frog. Conserv Biol 10(5):1398–1402. doi: 10.1046/j.1523-1739.1996.10051398.x CrossRefGoogle Scholar
  12. Blaustein A, Belden L, Olson D, Green D, Root T, Kiesecker J (2001) Amphibian breeding and climate change. Conserv Biol 15(6):1804–1809. doi: 10.1046/j.1523-1739.2001.00307.x CrossRefGoogle Scholar
  13. Blumthaler M, Ambach W (1990) Indication of increasing solar ultraviolet-B radiation flux in alpine regions. Science 248(4952):206–208. doi: 10.1126/science.2326634 PubMedCrossRefGoogle Scholar
  14. Both C, Artemyev AV, Blaauw B, Cowie RJ, Dekhuijzen AJ, Eeva T, Enemar A, Gustafsson L, Ivankina EV, Järvinen A, Metcalfe NB, Nyholm NE, Potti J, Ravussin PA, Sanz JJ, Silverin B, Slater FM, Sokolov LV, Török J, Winkel W, Wright J, Zang H, Visser ME (2004) Large-scale geographical variation confirms that climate change causes birds to lay earlier. Proc R Soc B 271:1657–1662PubMedCentralPubMedCrossRefGoogle Scholar
  15. Brodie E III (1992) Correlational selection for color pattern and antipredator behavior in the garter snake Thamnophis ordinoides. Evolution 46(5):1284–1298CrossRefGoogle Scholar
  16. Caruso C, Maherali H, Mikulyuk A, Carlson K, Jackson R (2005) Genetic variance and covariance for physiological traits in Lobelia: are there constraints on adaptive evolution? Evolution 59(4):826–837. doi: 10.1554/04-501 PubMedGoogle Scholar
  17. Croteau M, Davidson M, Lean DRS, Trudeau V (2008) Global increases in ultraviolet B radiation: potential impacts on amphibian development and metamorphosis. Physiol Biochem Zool 81(6):743–761. doi: 10.1086/591949 PubMedCrossRefGoogle Scholar
  18. Crump D, Berrill M, Coulson D, Lean DRS, McGillivray L, Smith MA (1999) Sensitivity of amphibian embryos, tadpoles, and larvae to enhanced UV-B radiation in natural pond conditions. Can J Zool 77:1956–1966. doi: 10.1139/cjz-77-12-1956 CrossRefGoogle Scholar
  19. Curtis M, Hays J (2007) Tolerance of dividing cells to replication stress in UVB-irradiated Arabidopsis roots: requirements for DNA translesion polymerases eta and zeta. DNA Repair 6(9):1859–1872. doi: 10.1016/j.dnarep.2007.03.004 CrossRefGoogle Scholar
  20. Endler JA (1995) Multiple-trait coevolution and environmental gradients in guppies. Trends Ecol Evol 10(1):22–29. doi: 10.1016/S0169-5347(00)88956-9 PubMedCrossRefGoogle Scholar
  21. Forister ML, Shapiro AM (2003) Climatic trends and advancing spring flight of butterflies in lowland California. Glob Change Biol 9:1130–1135CrossRefGoogle Scholar
  22. Friedberg EC, Walker GC, Siede W, Woods RD, Schultz RA, Ellenberger T (2006) DNA Repair and Mutagenesis, 2nd edn. American Society for Microbiology Press, WashingtonGoogle Scholar
  23. Garcia T, Paoletti D, Blaustein A (2009) Correlated trait response to multiple selection pressures in larval amphibians reveal conflict avoidance strategies. Freshwater Biol 54:1066–1077. doi: 10.1111/j.1365-2427.2008.02154.x CrossRefGoogle Scholar
  24. Häder D, Kumar H, Smith R, Worrest R (2007) Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci 6:267–285. doi: 10.1039/b700020k PubMedCrossRefGoogle Scholar
  25. Harper M, Peckarsky B (2006) Emergence cues of a mayfly in a high-altitude stream ecosystem: potential response to climate change. Ecol Appl 16(2):612–621PubMedCrossRefGoogle Scholar
  26. Harrison RG (1969) Harrison stages and description of the normal development of the spotted salamander, Ambystoma punctatum (Linn.). In: Wilens S (ed) Organization and development of the embryo. Yale University, Hartford, pp 44–66Google Scholar
  27. Hoffman R, Larson G, Brokes B (2003) Habitat segregation of Ambystoma gracile and Ambystoma macrodactylum in mountain ponds and lakes, Mount Rainier National Park, Washington. USA. J Herpetol 37(1):24–34CrossRefGoogle Scholar
  28. Jones LC, Leonard WP, Olson DH (2005) Amphibians of the Pacific Northwest. Seattle Audubon Society, SeattleGoogle Scholar
  29. Kern M, Nassar A, Guzy J, Dorcas M (2013) Oviposition site selection by spotted salamandars (Ambystoma maculatum) in an isolated wetland. J Herpetol 47(3):445–449. doi: 10.1670/11-179 CrossRefGoogle Scholar
  30. Kiesecker J, Blaustein A, Belden L (2001) Complex causes of amphibian population declines. Nature 410(6829):681–684. doi: 10.1038/35070552 PubMedCrossRefGoogle Scholar
  31. Killen SS, Marras S, Metcalfe NB, McKenzie DJ, Domenici P (2013) Environmental stressors alter relationships between physiology and behaviour. Trends Ecol Evol. doi: 10.1016/j.tree.2013.05.005 (in press)PubMedGoogle Scholar
  32. Lascoux M (1997) Unpredictability of correlated response to selection: linkage and initial frequency also matter. Evolution 51(5):1394–1400. doi: 10.2307/2411191 CrossRefGoogle Scholar
  33. Licht L (2003) Shedding light on ultraviolet radiation and amphibian embryos. Bioscience 53(6):551–561CrossRefGoogle Scholar
  34. Marco A, Lizana M, Alvarez A, Blaustein A (2001) Egg-wrapping behavior protects newt embryos from UV radiation. Anim Behav 61:639–644. doi: 10.1006/anbe.2000.1632 CrossRefGoogle Scholar
  35. Matsunaga T (2007) In vitro assays for evaluating the cellular responses to DNA damage induced by solar UV. AATEX 14:637–640Google Scholar
  36. Nussbaum RA, Brodie ED Jr, Storm RM (1983) Amphibians and reptiles of the Pacific Northwest. University of Idaho Press, MoscowGoogle Scholar
  37. Palen WJ, Schindler D (2010) Water clarity, maternal behavior, and physiology combine to eliminate UV radiation risk to amphibians in a montane landscape. Proc Natl Acad Sci 107(21):9701–9706. doi: 10.1073/pnas.0912970107 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Pandelova I, Hewitt SR, Hays JB (2005) Fluoroimaging-based immunoassay of DNA photoproducts in ultraviolet-B-irradiated tadpoles. Method Mol Biol 291(1):29–38. doi: 10.1385/1-59259-840-4:029 Google Scholar
  39. Pearl C, Adams M, Bury RB, Wente W, McCreary B (2009) Evaluating amphibian declines with site revisits and occupancy models: status of montane anurans in the Pacific Northwest USA. Diversity 1:166–181. doi: 10.3390/d1020166 CrossRefGoogle Scholar
  40. Perin S, Lean DRS (2004) The effects of ultraviolet-B radiation on freshwater ecosystems of the Arctic: influence from stratospheric ozone depletion and climate change. Environ Rev 12:1–70. doi: 10.1139/A04-003 CrossRefGoogle Scholar
  41. Petranka JW, Petranka JG (1981) On the evolution of nest site selection in the marbled salamander, Ambystoma opacum. Copeia 1981:387–391CrossRefGoogle Scholar
  42. Primack R, Ibáñez I, Higuchi H, Don Lee S, Miller-Rushing A, Wilson A, Silander J Jr (2009) Spatial and interspecific variability in phenological responses to warming temperatures. Biol Conserv 142:2569–2577CrossRefGoogle Scholar
  43. Refsnider J, Janzen F (2010) Putting eggs in one basket: ecological and evolutionary hypotheses for variation in oviposition-site choice. Annu Rev Ecol Evol S 41:39–57. doi: 10.1146/annurev-ecolsys-102209-144712 CrossRefGoogle Scholar
  44. Resetarits WJ, Wilbur HM (1989) Choice of oviposition site by Hyla chrysoscelis: role of predators and competitors. Ecology 70(1):220–228. doi: 10.2307/1938428 CrossRefGoogle Scholar
  45. Romano A, Forcina G, Barbanera F (2008) Breeding site selection by olfactory cues in the threatened northern spectacled salamander Salamandrina perspicillata (Savi 1821). Aquat Conserv 18(5):799–805. doi: 10.1002/aqc.890 CrossRefGoogle Scholar
  46. Sih A, Ferrari MCO, Harris DJ (2011) Evolution and behavioural responses to human-induced rapid environmental change. Evol Appl 4(2):367–387PubMedCentralCrossRefGoogle Scholar
  47. Sinha RP, Häder DP (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225–236. doi: 10.1039/b201230h PubMedCrossRefGoogle Scholar
  48. Smith MA, Berrill M, Kapron C (2002) Photolyase activity of the embryo and the ultraviolet absorbance of embryo jelly for several Ontario amphibian species. Can J Zool 80:1109–1116. doi: 10.1139/Z02-093 CrossRefGoogle Scholar
  49. Smithgill SJ, Berven KA (1979) Predicting amphibian metamorphosis. Am Nat 113(4):563–585. doi: 10.1086/283413 CrossRefGoogle Scholar
  50. Snodgrass JW, Forester DC, Lahti M, Lehman E (2007) Dusky salamander (Desmognathus fuscus) nest-site selection over multiple spatial scales. Herpetologica 63:441–449CrossRefGoogle Scholar
  51. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786. doi: 10.1126/science.1103538 PubMedCrossRefGoogle Scholar
  52. Thurman LL (2012) Elevational differences in UV-B response by the long-toed salamander (Ambystoma macrodactylum). Master thesis, Oregon State University, Corvallis, OR, USAGoogle Scholar
  53. Todd B, Scott D, Pechmann J, Gibbons JW (2010) Climate change correlates with rapid delays and advancements in reproductive timing in an amphibian community. Proc R Soc B 278:2191–2197PubMedCentralPubMedCrossRefGoogle Scholar
  54. van de Mortel T, Buttemer W, Hoffman P, Hays J, Blaustein A (1998) A comparison of photolyase activity in three Australian tree frogs. Oecologia 115:366–369. doi: 10.1007/s004420050529 CrossRefGoogle Scholar
  55. Vredenburg VT (2004) Reversing introduced species effects: experimental removal of introduced fish leads to rapid recovery of a declining frog. Proc Natl Acad Sci 101(20):7646–7650. doi: 10.1073/pnas.0402321101 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Wilbur HM, Collins JP (1973) Ecological aspects of amphibian metamorphosis. Science 182(4119):1305–1314. doi: 10.1126/science.182.4119.1305 PubMedCrossRefGoogle Scholar
  57. Worley A, Houle D, Barrett S (2003) Consequences of hierarchical allocation for the evolution of life-history traits. Am Nat 161(1):153–167. doi: 10.1086/345461 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Lindsey L. Thurman
    • 1
  • Tiffany S. Garcia
    • 1
  • Peter D. Hoffman
    • 2
  1. 1.Department of Fisheries and WildlifeOregon State UniversityCorvallisUSA
  2. 2.Department of Environmental and Molecular ToxicologyOregon State UniversityCorvallisUSA

Personalised recommendations