, Volume 175, Issue 3, pp 971–983 | Cite as

Management intensity at field and landscape levels affects the structure of generalist predator communities

  • Adrien Rusch
  • Klaus Birkhofer
  • Riccardo Bommarco
  • Henrik G. Smith
  • Barbara Ekbom
Community ecology - Original research


Agricultural intensification is recognised as a major driver of biodiversity loss in human-modified landscapes. Several agro-environmental measures at different spatial scales have been suggested to mitigate the negative impact of intensification on biodiversity and ecosystem services. The effect of these measures on the functional structure of service-providing communities remains, however, largely unexplored. Using two distinct landscape designs, we examined how the management options of organic farming at the field scale and crop diversification at the landscape level affect the taxonomic and functional structure of generalist predator communities and how these effects vary along a landscape complexity gradient. Organic farming as well as landscapes with longer and more diversified crop rotations enhanced the activity-density of spiders and rove beetles, but not the species richness or evenness. Our results indicate that the two management options affected the functional composition of communities, as they primarily enhanced the activity-density of functionally similar species. The two management options increased the functional similarity between spider species in regards to hunting mode and habitat preference. Organic farming enhanced the functional similarity of rove beetles. Management options at field and landscape levels were generally more important predictors of community structure when compared to landscape complexity. Our study highlights the importance of considering the functional composition of generalist predators in order to understand how agro-environmental measures at various scales shape community assemblages and ecosystem functioning in agricultural landscapes.


Agri-environmental measures Biological pest control Community composition Crop rotation Functional diversity Natural enemies Organic farming Traits 



We thank Mattias Jonsson for helpful comments on an earlier draft of this manuscript and two anonymous reviewers for very helpful comments on the manuscript. Financial support was provided by the Swedish research council FORMAS to the project “SAPES—Multifunctional agriculture: harnessing biodiversity for sustaining agricultural production and ecosystem services”, and by the ERA-Net Biodiversa to the project “APPEAL—Assessment and valuation of Pest suppression Potential through biological control in European Agricultural Landscapes”.

Supplementary material

442_2014_2949_MOESM1_ESM.docx (348 kb)
Supplementary material 1 (DOCX 353 kb)


  1. Andersen A, Eltun R (2000) Long-term developments in the carabid and staphylinid (Col., Carabidae and Staphylinidae) fauna during conversion from conventional to biological farming. J Appl Entomol 124:51–56. doi: 10.1046/j.1439-0418.2000.00438.x CrossRefGoogle Scholar
  2. Batáry P, Báldi A, Kleijn D, Tscharntke T (2011) Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis. Proc R Soc B 278:1894–1902PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bell JR, Wheater CP, Cullen WR (2001) The implications of grassland and heathland management for the conservation of spider communities: a review. J Zool 255:377–387. doi: 10.1017/S0952836901001479 CrossRefGoogle Scholar
  4. Bengtsson J, Ahnström J, Weibull A-C (2005) The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J Appl Ecol 42:261–269. doi: 10.1111/j.1365-2664.2005.01005.x CrossRefGoogle Scholar
  5. Bennett AJ, Bending GD, Chandler D, Hilton S, Mills P (2011) Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations. Biol Rev 87:52–71. doi: 10.1111/j.1469-185X.2011.00184.x PubMedCrossRefGoogle Scholar
  6. Birkhofer K, Bezemer TM, Bloem J, Bonkowski M, Christensen S, Dubois D, Ekelund F, Fließbach A, Gunst L, Hedlund K, Mäder P, Mikola J, Robin C, Setälä H, Tatin-Froux F, Van der Putten WH, Scheu S (2008) Long-term organic farming fosters below and aboveground biota: implications for soil quality, biological control and productivity. Soil Biol Biochem 40:2297–2308. doi: 10.1016/jsoilbio200805007 CrossRefGoogle Scholar
  7. Birkhofer K, Bezemer TM, Hedlund K, Setälä H (2012) Community composition of soil organisms under different wheat farming systems. In: Cheeke T, Coleman DC, Wall DH (eds) Microbial ecology in sustainable agroecosystems advances in agroecology. CRC, New York, pp 89–111CrossRefGoogle Scholar
  8. Blake S, Foster GN, Eyre MD, Luff ML (1994) Effects of habitat type and grassland management practices on the body size distribution of carabid beetles. Pedobiolgia 38:502–512Google Scholar
  9. Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28:230–238. doi: 10.1016/j.tree.2012.10.012 PubMedCrossRefGoogle Scholar
  10. Butterfield BJ, Suding KN (2013) Single-trait functional indices outperform multi-trait indices in linking environmental gradients and ecosystem services in a complex landscape. J Ecol 101:9–17. doi:  10.1111/1365-2745.12013
  11. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67. doi: 10.1038/nature11148 PubMedCrossRefGoogle Scholar
  12. Chaplin-Kramer R, O’Rourke ME, Blitzer EJ, Kremen C (2011) A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol Lett 14:922–932. doi: 10.1111/j.1461-0248.2011.01642.x PubMedCrossRefGoogle Scholar
  13. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310. doi: 10.1126/science.199.4335.1302 PubMedCrossRefGoogle Scholar
  14. Crowder DW, Snyder WE (2010) Eating their way to the top? Mechanisms underlying the success o f invasive insect generalist predators. Biological Invasions 12:2857–2876Google Scholar
  15. Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142. doi: 10.1017/S1464793105006949 PubMedCrossRefGoogle Scholar
  16. Flynn DFB, Gogol-Prokurat M, Nogeire T, Molinari N, Richers BT, Lin BB, Simpson N, Mayfield MM, DeClerck F (2009) Loss of functional diversity under land use intensification across multiple taxa. Ecol Lett 12:22–33. doi: 10.1111/j.1461-0248.2008.01255.x PubMedCrossRefGoogle Scholar
  17. Fuller RJ, Norton LR, Feber RE, Johnson PJ, Chamberlain DE, Joys AC, Mathews F, Stuart RC, Townsend MC, Manley WJ, Wolfe MS, Macdonald DW, Firbank LG (2005) Benefits of organic farming to biodiversity vary among taxa. Biol Lett 1:431–434. doi: 10.1098/rsbl.2005.0357 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Gagic V, Hänke S, Thies C, Scherber C, Tomanović Ž, Tscharntke T (2012) Agricultural intensification and cereal aphid–parasitoid–hyperparasitoid food webs: network complexity, temporal variability and parasitism rates. Oecologia 170:1099–1109. doi: 10.1007/s00442-012-2366-0 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Henle K, Davies K, Kleyer M, Margules C, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodiv Cons 13:207–251. doi: 10.1023/B:BIOC.0000004319.91643.9e CrossRefGoogle Scholar
  20. Holland JM, Luff ML (2000) The effects of agricultural practices on carabidae in temperate agroecosystems. Integr Pest Manag Rev 5:109–129. doi: 10.1023/A:1009619309424 CrossRefGoogle Scholar
  21. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35. doi: 10.2307/4539083 CrossRefGoogle Scholar
  22. Kleijn D, Baquero RA, Clough Y, Díaz M, De Esteban J, Fernández F, Gabriel D, Herzog F, Holzschuh A, Jöhl R, Knop E, Kruess A, Marshall EJP, Steffan-Dewenter I, Tscharntke T, Verhulst J, West TM, Yela JL (2006) Mixed biodiversity benefits of agri-environment schemes in five European countries. Ecol Lett 9:243–254. doi: 10.1111/j.1461-0248.2005.00869.x PubMedCrossRefGoogle Scholar
  23. Kleijn D, Kohler F, Báldi A, Batáry P, Concepción E, Clough Y, Díaz M, Gabriel D, Holzschuh A, Knop E, Kovács A, Marshall EJ, Tscharntke T, Verhulst J (2009) On the relationship between farmland biodiversity and land-use intensity in Europe. Proc R Soc B-Biol Sci 276:903–909. doi: 10.1098/rspb.2008.1509 CrossRefGoogle Scholar
  24. Kleijn D, Rundlöf M, Scheper J, Smith HG, Tscharntke T (2011) Does conservation on farmland contribute to halting the biodiversity decline? Trends Ecol Evol 26:474–481. doi: 10.1016/j.tree.2011.05.009 PubMedCrossRefGoogle Scholar
  25. Jordbruksverket (2006) Bioenergi: ny energi för jordbruket [online]. ra06_1.pdf. Accessed 8 June 2009Google Scholar
  26. Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305. doi: 10.1890/08-2244.1 PubMedCrossRefGoogle Scholar
  27. Laliberté E, Shipley B (2011) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version, pp 10–11Google Scholar
  28. Laliberté E, Wells JA, DeClerck F, Metcalfe DJ, Catterall CP, Queiroz C, Aubin I, Bonser SP, Ding Y, Fraterrigo JM, McNamara S, Morgan JW, Merlos DS, Vesk PA, Mayfield MM (2010) Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecol Lett 13:76–86. doi: 10.1111/j.1461-0248.2009.01403.x PubMedCrossRefGoogle Scholar
  29. Langellotto GA, Denno RF (2004) Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139:1–10PubMedCrossRefGoogle Scholar
  30. Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24. doi: 10.2307/2657192 CrossRefGoogle Scholar
  31. Lemke A, Poehling, H-M (2002) Sown weed strips in cereal fields: overwintering site and ‘‘source’’ habitat for Oedothorax apicatus (Blackwall) and Erigone atra (Blackwall) (Araneae: Erigonidae). Agric Ecosyst Environ 90:67–80Google Scholar
  32. Lohaus K, Vidal S, Thies C (2013) Farming practices change food web structures in cereal aphid–parasitoid–hyperparasitoid communities. Oecologia 171:249–259. doi: 10.1007/s00442-012-2387-8 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Magura T, Tóthmérész B, Lövei GL (2006) Body size inequality of carabids along an urbanisation gradient. Basic Appl Ecol 7:472–482. doi: 10.1016/j.baae.2005.08.005 CrossRefGoogle Scholar
  34. Martin EA, Reineking B, Seo B, Steffan-Dewenter I (2013) Natural enemy interactions constrain pest control in complex agricultural landscapes. Proc Natl Acad Sci USA 110:5534–5539. doi: 10.1073/pnas.1215725110 PubMedCentralPubMedCrossRefGoogle Scholar
  35. McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden BeachGoogle Scholar
  36. Moonen AC, Bàrberi P (2008) Functional biodiversity: an agroecosystem approach. Agric Ecosyst Environ 1277–1221Google Scholar
  37. Mouillot D, Villéger S, Sabatier P, Scherer-Lorenzen M, Mason MWH (2011) Functional structure of biological communities predicts ecosystem multifunctionality. PLoS ONE 6(3):e17476. doi: 10.1371/journal.pone.0017476
  38. Öberg S, Ekbom B (2006) Recolonisation and distribution of spiders and carabids in cereal fields after spring sowing. Ann Appl Biol 149:203–211. doi: 10.1111/j.1744-7348.2006.00088.x CrossRefGoogle Scholar
  39. Persson AS, Olsson O, Rundlöf M, Smith HG (2010) Land use intensity and landscape complexity: analysis of landscape characteristics in an agricultural region in Southern Sweden. Agric Ecosyst Environ 136:169–176. doi: 10.1016/j.agee.2009.12.018 CrossRefGoogle Scholar
  40. Ribera I, Dolédec S, Downie IS, Foster GN (2001) Effect of land disturbance and stress on species traits of ground beetle assemblages. Ecology 82:1112–1129CrossRefGoogle Scholar
  41. Rundlöf M, Bengtsson J, Smith HG (2008) Local and landscape effects of organic farming on butterfly species richness and abundance. J Appl Ecol 45:813–820. doi: 10.1111/j.1365-2664.2007.01448.x CrossRefGoogle Scholar
  42. Rusch A, Valantin-Morison M, Sarthou JP, Roger-Estrade J (2010) Biological control of insect pests in agroecosystems: effects of crop management, farming systems, and seminatural habitats at the landscape scale: a review. Adv Agron 109:219. doi: 10.1016/S0065-2113(10)09006-1 CrossRefGoogle Scholar
  43. Rusch A, Bommarco R, Jonsson M, Smith HG, Ekbom B (2013) Flow and stability of natural pest control services depend on complexity and crop rotation at the landscape scale. J Appl Ecol 50:345–354. doi: 10.1111/1365-2664.12055 CrossRefGoogle Scholar
  44. Schmidt MH, Tscharntke T (2005) Landscape context of sheetweb spider (Araneae: Linyphiidae) abundance in cereal fields. J Biogeogr 32:467–473. doi: 10.1111/j.1365-2699.2004.01244.x CrossRefGoogle Scholar
  45. Schmidt MH, Roschewitz I, Thies C, Tscharntke T (2005) Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. J Appl Ecol 42:281–287. doi: 10.1111/j.1365-2664.2005.01014.x CrossRefGoogle Scholar
  46. Stoate C, Boatman ND, Borralho RJ et al (2001) Ecological impacts of arable intensification in Europe. J Environ Manag 63:337–365. doi: 10.1006/jema.2001.0473 CrossRefGoogle Scholar
  47. Thies C, Haenke S, Scherber C, Bengtsson J, Bommarco R, Clement LW, Ceryngier P, Dennis C, Emmerson M, Gagic V, Hawro V, Liira J, Weisser WW, Winqvist C, Tscharntke T (2011) The relationship between agricultural intensification and biological control: experimental tests across Europe. Ecol Appl 21:2187–2196. doi: 10.1890/10-0929.1 PubMedCrossRefGoogle Scholar
  48. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity: ecosystem service management. Ecol Lett 8:857–874. doi: 10.1111/j.1461-0248.2005.00782.x CrossRefGoogle Scholar
  49. Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, Van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes: eight hypotheses. Biol Rev 87:661–685PubMedCrossRefGoogle Scholar
  50. Tuck SL, Winqvist C, Mota F et al (2014) Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J Appl Ecol. doi: 10.1111/1365-2664.12219
  51. Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301. doi: 10.2307/27650754 PubMedCrossRefGoogle Scholar
  52. White EP, Ernest SKM, Kerkhoff AJ, Enquist BJ (2007) Relationships between body size and abundance in ecology. Trends Ecol Evol 22:323–330. doi: 10.1016/j.tree.2007.03.007 PubMedCrossRefGoogle Scholar
  53. Winqvist C, Bengtsson J, Aavik T, Berendse F, Clement LW, Eggers S, Fischer C, Flohre A, Geiger F, Liira J, Pärt T, Thies C, Tscharntke T, Weisser WW, Bommarco R (2011) Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. J Appl Ecol 48:570–579CrossRefGoogle Scholar
  54. Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Adrien Rusch
    • 1
    • 2
    • 4
  • Klaus Birkhofer
    • 3
  • Riccardo Bommarco
    • 4
  • Henrik G. Smith
    • 3
  • Barbara Ekbom
    • 4
  1. 1.INRA, ISVV, UMR 1065 Santé et Agroécologie du VignobleVillenave d’OrnonFrance
  2. 2.Université de Bordeaux, UMR 1065 SAVE, Bordeaux Sciences AgroVillenave d’OrnonFrance
  3. 3.Department of Biology, Centre of Environmental and Climate ResearchLund UniversityLundSweden
  4. 4.Department of EcologySwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations