, Volume 174, Issue 4, pp 1241–1254 | Cite as

Functional responses of the rough-legged buzzard in a multi-prey system

  • P. Hellström
  • J. Nyström
  • A. Angerbjörn
Population ecology - Original research


The functional response is a key element of predator–prey interactions. Basic functional response theory explains foraging behavior of individual predators, but many empirical studies of free-ranging predators have estimated functional responses by using population-averaged data. We used a novel approach to investigate functional responses of an avian predator (the rough legged-buzzard Buteo lagopus Pontoppidan, 1763) to intra-annual spatial variation in rodent density in subarctic Sweden, using breeding pairs as the sampling unit. The rough-legged buzzards responded functionally to Norwegian lemmings (Lemmus lemmus L. 1758), grey-sided voles (Myodes rufocanus Sundevall, 1846) and field voles (Microtus agrestis L. 1761), but different rodent prey were not utilised according to relative abundance. The functional response to Norwegian lemmings was a steep type II curve and a more shallow type III response to grey-sided voles. The different shapes of these two functional responses were likely due to combined effects of differences between lemmings and grey-sided voles in habitat utilisation, anti-predator behaviour and size-dependent vulnerability to predation. Diet composition changed less than changes in relative prey abundance, indicating negative switching, with high disproportional use of especially lemmings at low relative densities. Our results suggest that lemmings and voles should be treated separately in future empirical and theoretical studies in order to better understand the role of predation in this study system.


Predation Rodent cycle Lemmus Subarctic 



We are grateful to Johan S. Eklöf for field work, and to Peter Lindberg who conducted surveys in our study area during 1966–1978. Charles J. Krebs gave instructive comments on rodent trapping methods. Geir A. Sonerud, Peter Abrams, Bertil Borg, Love Dalén, Hannu Ylönen, Janne Sundell and anonymous referees provided constructive comments that improved the manuscript. Vattenfall AB, Porjus, supported us with lodging facilities. This project was financed by grants to A. Angerbjörn from The Strategic Foundation for Environmental Research (to the Mountain-MISTRA project), Formas, and Swedish Polar Research Secreteriat/Swedish Research Council. P. Hellström received financial support from Alvin’s foundation for bird protection, the CLUB 300 foundation for bird protection and the Göran Gustafsson foundation.


  1. Abrams P (1987) The functional responses of adaptive consumers of two resources. Theor Popul Biol 32:262–288. doi: 10.1016/0040-5809(87)90050-5 Google Scholar
  2. Abrams PA (1994) The fallacies of ‘ratio-dependent’ predation. Ecology 75:1842–1850. doi: 10.2307/1939644 Google Scholar
  3. Abrams PA, Ginzburg LR (2000) The nature of predation: prey dependent, ratio dependent or neither? Trends Ecol Evol 15:337–341. doi: 10.1016/S0169-5347(00)01908-X PubMedGoogle Scholar
  4. Abrams P, Matsuda H (1993) Effects of adaptive predatory and anti-predator behaviour in a two-prey-one-predator system. Evol Ecol 7:312–326. doi: 10.1007/BF01237749 Google Scholar
  5. Andersson M (1976) Lemmus lemmus: a possible case of aposematic coloration and behavior. J Mammal 57:461–469. doi: 10.2307/1379296 Google Scholar
  6. Arditi R, Ginzburg LR (1989) Coupling in predator-prey dynamics: ratio-dependence. J Theor Biol 139:311–326. doi: 10.1016/S0022-5193(89)80211-5 Google Scholar
  7. Asseburg C (2006) A Bayesian approach to modelling field data on multi-species predator-prey interactions. PhD thesis, University of St. Andrews, St. AndrewsGoogle Scholar
  8. Barth L, Angerbjörn A, Tannerfeldt M (2000) Are Norwegian lemmings Lemmus lemmus avoided by arctic Alopex lagopus or red foxes Vulpes vulpes? A feeding experiment. Wildl Biol 6:101–109Google Scholar
  9. Boutin S (1995) Testing predator-prey theory by studying fluctuating populations of small mammals. Wildl Res 22:89–100. doi: 10.1071/WR9950089 Google Scholar
  10. Brom TG (1986) Microscopic identification of feathers and feather fragments of palearctic birds. Bijdr Dierkunde 56:181–204Google Scholar
  11. Burnham KP, Anderson DR (2002) Model selection and multimodel inference. In: A practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  12. Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519. doi: 10.1016/j.ecolmodel.2006.03.017 Google Scholar
  13. Chesson J (1978) Measuring preference in selective predation. Ecology 59:211–215. doi: 10.2307/1936364 Google Scholar
  14. Chesson PL (1984) Variable predators and switching behavior. Theor Popul Biol 26:1–26. doi: 10.1016/0040-5809(84)90021-2 Google Scholar
  15. Cornulier T, Yoccoz NG, Bretagnolle V, Brommer JE, Butet A, Ecke F, Elston DA, Framstad E, Henttonen H, Hörnfeldt B, Huitu O, Imholt C, Ims RA, Jacob J, Jedrzejewska B, Millon A, Petty S, Pietiäinen H, Tkadlec E, Zub K, Lambin X (2013) Europe-wide dampening of population cycles in keystone herbivores. Science 340:63–66. doi: 10.1126/science.1228992 PubMedGoogle Scholar
  16. Cramp S, Simmons KEL (eds) (1980) The birds of the Western Palearctic, vol 2. Oxford University Press, OxfordGoogle Scholar
  17. Davoren GK, Burger AE (1999) Differences in prey selection and behaviour during self-feeding and chick provisioning in rhinoceros auklets. Anim Behav 58:853–863. doi: 10.1006/anbe.1999.1209 PubMedGoogle Scholar
  18. Day MG (1966) Identification of hair and feather remains in the gut and faeces of stoats and weasels. J Zool 148:201–217. doi: 10.1111/j.1469-7998.1966.tb02948.x Google Scholar
  19. Development Core Team R (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  20. Dickman CR (1992) Predation and habitat shift in the house mouse, Mus domesticus. Ecology 73:313–322. doi: 10.2307/1938742 Google Scholar
  21. Dickman CR, Predavec M, Lynam AJ (1991) Differential predation of size and sex classes of mice by the barn owl, Tyto alba. Oikos 62:67–76. doi: 10.2307/3545447 Google Scholar
  22. Ecke F, Christensen P, Rentz R, Nilsson M, Sandström P, Hörnfeldt B (2010) Landscape structure and the long-term decline of cyclic grey-sided voles in Fennoscandia. Landsc Ecol 25:551–560. doi: 10.1007/s10980-009-9441-x Google Scholar
  23. Ekerholm P, Oksanen L, Oksanen T (2001) Long-term dynamics of voles and lemmings at the timberline and above the willow limit as a test of hypotheses on trophic interactions. Ecography 24:555–568. doi: 10.1034/j.1600-0587.2001.d01-211.x Google Scholar
  24. Englund G, Leonardsson K (2008) Scaling up the functional response for spatially heterogeneous systems. Ecol Lett 11:440–449. doi: 10.1111/j.1461-0248.2008.01159.x PubMedGoogle Scholar
  25. Falck W, Bjørnstad ON, Stenseth NC (1995) Voles and lemmings: chaos and uncertainty in fluctuating populations. Proc R Soc Lond B 262:363–370. doi: 10.1098/rspb.1995.0218 Google Scholar
  26. Framstad E, Stenseth NC, Bjørnstad ON, Falck W (1997) Limit cycles in Norwegian lemmings: tensions between phase-dependence and density-dependence. Proc R Soc Lond B 264:31–38. doi: 10.1098/rspb.1997.0005 Google Scholar
  27. Fryxell JM, Lundberg P (1998) Individual behaviour and community dynamics. Chapman & Hall, LondonGoogle Scholar
  28. Gruyer N, Gauthier G, Berteaux D (2008) Cyclic dynamics of sympatric lemming populations on Bylot Island, Nunavut, Canada. Can J Zool 86:910–917. doi: 10.1139/Z08-059 Google Scholar
  29. Hagemeijer WJM, Blair MJ (1997) The EBCC atlas of European breeding birds. Poyser, LondonGoogle Scholar
  30. Hagen Y (1952) Rovfuglene og viltpleien. Gyldendal Norsk, OsloGoogle Scholar
  31. Hagen Y (1969) Norske undersøkelser over avkomproduksjonen hos rovfugler og ugler sett i relasjon til smågnagerbestandens vekslinger. Fauna 22:73–126Google Scholar
  32. Hakkarainen H, Korpimäki E, Mappes T, Palokangas P (1992) Kestrel hunting behaviour towards solitary and grouped Microtus agrestis and M. epiroticus—a laboratory experiment. Ann Zool Fenn 29:279–284Google Scholar
  33. Hambäck PA, Schneider M, Oksanen T (1998) Winter herbivory by voles during a population peak: the relative importance of local factors and landscape pattern. J Anim Ecol 67:544–553. doi: 10.1046/j.1365-2656.1998.00231.x Google Scholar
  34. Hansen TF, Stenseth NC, Henttonen H (1999) Multiannual vole cycles and population regulation during long winters: an analysis of seasonal density dependence. Am Nat 154:129–139. doi: 10.1086/303229 Google Scholar
  35. Hanski I, Henttonen H (1996) Predation on competing rodent species: a simple explanation of complex patterns. J Anim Ecol 65:220–232. doi: 10.2307/5725 Google Scholar
  36. Hanski I, Henttonen H, Hansson L (1994) Temporal variability and geographical patterns in the population density of microtine rodents: a reply to Xia and Boonstra. Am Nat 144:329–342. doi: 10.1086/285678 Google Scholar
  37. Hanski I, Henttonen H, Korpimäki E, Oksanen L, Turchin P (2001) Small-rodent dynamics and predation. Ecology 82:1505–1520. doi: 10.2307/2679796 Google Scholar
  38. Hellström P (2007) Interactions between rodents and rough-legged buzzards (Buteo lagopus) in northern Sweden. Phil. lic. thesis, Stockholm University, StockholmGoogle Scholar
  39. Henttonen H, Hanski I (2000) Population dynamics of small rodents in northern Fennoscandia. In: Perry JN, Smith RH, Woiwood IP (eds) Chaos in Real Data. Kluwer, Dordrecht, pp 73–96Google Scholar
  40. Henttonen H, Kaikusalo A (1993) Lemming movements. In: Stenseth NC, Ims RA (eds) The biology of lemmings. Academic Press, London, pp 157–186Google Scholar
  41. Henttonen H, Wallgren H (2001) Rodent dynamics and communities in the birch forest zone of northern Fennoscandia. In: Wielgolaski FE (ed) Nordic Mountain Birch Ecosystems. UNESCO, CarnforthGoogle Scholar
  42. Henttonen H, Oksanen T, Jortikka A, Haukisalmi V (1987) How much do weasels shape microtine cycles in the northern Fennoscandian taiga? Oikos 50:353–365. doi: 10.2307/3565496 Google Scholar
  43. Heske EJ, Steen H (1993) Interspecific interactions and microhabitat use in a Norwegian low alpine rodent assemblage. In: Stenseth NC, Ims RA (eds) The biology of lemmings. Academic, London, pp 397–409Google Scholar
  44. Holling CS (1959a) The components of predation as revealed by a study of small mammal predation of the European pine sawfly. Can Entomol 91:293–320Google Scholar
  45. Holling CS (1959b) Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398Google Scholar
  46. Huhtala K, Pulliainen E, Jussila P, Tunkkari PS (1996) Food niche of the gyrfalcon Falco rusticolus nesting in the far north of Finland compared with other choices of the species. Ornis Fenn 73:78–87Google Scholar
  47. Ims RA, Fuglei E (2005) Trophic interaction cycles in tundra ecosystems and the impact of climate change. Bioscience 55:311–322. doi:10.1641/0006-3568(2005)055[0311:TICITE]2.0.CO;2Google Scholar
  48. Ims RA, Yoccoz NG, Killengreen ST (2011) Determinants of lemming outbreaks. Proc Natl Acad Sci USA 108:1970–1974. doi: 10.1073/pnas.1012714108 PubMedCentralPubMedGoogle Scholar
  49. Inchausti P, Ballesteros S (2008) Intuition, functional responses and the formulation of predator–prey models when there is a large disparity in the spatial domains of the interacting species. J Anim Ecol 77:891–897. doi: 10.1111/j.1365-2656.2008.01419.x PubMedGoogle Scholar
  50. Johannesen E, Mauritzen M (1999) Habitat selection of grey-sided voles and bank voles in two subalpine populations in southern Norway. Ann Zool Fenn 36:215–222Google Scholar
  51. Jost C, Devulder G, Vucetich JA, Peterson RO, Arditi R (2005) The wolves of Isle Royale display scale-invariant satiation and ratio-dependent predation on moose. J Anim Ecol 74:809–816. doi: 10.1111/j.1365-2656.2005.00977.x Google Scholar
  52. Kean-Howie JC, Pearre S Jr, Dickie LM (1988) Experimental predation by sticklebacks on larval mackerel and protection of fish larvae by zooplankton alternative prey. J Exp Mar Biol Ecol 124:239–259. doi: 10.1016/0022-0981(88)90174-8 Google Scholar
  53. Koen-Alonso M (2007) A process-oriented approach to the multispecies functional response. In: Rooney N, McCann KS, Noakes DLG (eds) From energetics to ecosystems: the dynamics and structure of ecological systems. Springer, DordrechtGoogle Scholar
  54. Koivunen V, Korpimäki E, Hakkarainen H, Norrdahl K (1996) Prey choice of Tengmalm’s owls (Aegolius funereus): preference for substandard individuals? Can J Zool 74:816–823. doi: 10.1139/z96-094 Google Scholar
  55. Koponen T, Kokkonen A, Kalela O (1961) On a case of spring migration in the Norwegian lemming. Ann Acad Sci Fenn Ser A 52:1–30Google Scholar
  56. Korpimäki E, Tolonen P, Valkama J (1994) Functional responses and load-size effect in central place foragers: data from the kestrel and some general comments. Oikos 69:504–510. doi: 10.2307/3545862 Google Scholar
  57. Korpimäki E, Norrdahl K, Klemola T, Pettersen T, Stenseth NC (2002) Dynamic effects of predators on cyclic voles: field experimentation and model extrapolation. Proc R Soc Lond B 269:991–997. doi: 10.1098/rspb.2002.1972 Google Scholar
  58. Krebs CJ, Myers JH (1974) Population cycles in small mammals. Adv Ecol Res 8:267–399. doi: 10.1016/S0065-2504(08)60280-9 Google Scholar
  59. Krebs CJ, Kenney AJ, Gilbert S, Danell K, Angerbjörn A, Erlinge S, Bromley RG, Shank C, Carriere S (2002) Synchrony in lemming and vole populations in the Canadian arctic. Can J Zool 80:1323–1333. doi: 10.1139/z02-120 Google Scholar
  60. Kuno E (1987) Principles of predator-prey interaction in theoretical, experimental, and natural population systems. Adv Ecol Res 16:249–337. doi: 10.1016/S0065-2504(08)60090-2 Google Scholar
  61. Lindén H, Wikman M (1983) Goshawk predation on tetraonids: availability of prey and diet of the predator in the breeding season. J Anim Ecol 52:953–968. doi: 10.2307/4466 Google Scholar
  62. Magnusson M, Bergsten A, Ecke F, Bodin Ö, Bodin L, Hörnfeldt B (2013) Predicting grey-sided vole occurrence in northern Sweden at multiple spatial scales. Ecol Evol 3:4365–4376. doi: 10.1002/ece3.827 PubMedCentralPubMedGoogle Scholar
  63. Manly BFJ, Miller P, Cook LM (1972) Analysis of a selective predation experiment. Am Nat 106:719–736. doi: 10.1086/282808 Google Scholar
  64. Manly BFJ, McDonald LL, Thomas DL, McDonald TL, Erickson WP (2002) Resource selection by animals—statistical design and analysis for field studies, 2nd edn. Kluwer, DordrechtGoogle Scholar
  65. Markman S, Pinshow B, Wright J, Kotler BP (2004) Food patch use by parent birds: to gather food for themselves or for their chicks? J Anim Ecol 73:747–755. doi: 10.1111/j.0021-8790.2004.00847.x Google Scholar
  66. Matthiopoulos J, Graham K, Smout S, Asseburg C, Redpath S, Thirgood S, Hudson P, Harwood J (2007) Sensitivity to assumptions in models of generalist predation on a cyclic prey. Ecology 88:2576–2586. doi: 10.1890/06-0483.1 PubMedGoogle Scholar
  67. Messier F (1995) On the functional and numerical responses of wolves to changing prey density. In: Carbyn LN, Fritts SH, Seip DR (eds) Ecology and conservation of wolves in a changing world. Canadian Circumpolar Institute, Edmonton, pp 187–197Google Scholar
  68. Moleón M, Sánchez-Zapata JA, Gil-Sánchez JM, Ballesteros-Duperón E, Barea-Azcón JM, Virgós E (2012) Predator–prey relationships in a Mediterranean vertebrate system: Bonelli’s eagles, rabbits and partridges. Oecologia (Berl) 168:679–689. doi: 10.1007/s00442-011-2134-6 Google Scholar
  69. Murdoch WW (1969) Switching in general predators: experiments on predator specificity and stability of prey populations. Ecol Monogr 39:335–354. doi: 10.2307/1942352 Google Scholar
  70. Murdoch WW, Oaten A (1975) Predation and population stability. Adv Ecol Res 9:1–131. doi: 10.1016/S0065-2504(08)60288-3 Google Scholar
  71. Murdoch WW, Briggs CJ, Nisbet RM (2003) Consumer-resource dynamics. Princeton University Press, PrincetonGoogle Scholar
  72. Myllymäki A, Aho J, Lind EA, Tast J (1962) Behaviour and daily activity of the Norwegian lemming, Lemmus lemmus (L.) during autumn migration. Ann Zool Soc Zool Bot Fenn Vanamo 24:1–31Google Scholar
  73. Nelson L Jr, Clark FW (1973) Correction for sprung traps in catch/effort calculations of trapping results. J Mammal 54:295–298. doi: 10.2307/1378903 Google Scholar
  74. Niethammer J, Krapp F (eds) (1982) Handbuch der Säugetiere Europas. Band 2/I, Nagetiere II (Cricetidae, Arvicolidae, Zapodidae, Spalacidae, Hystricidae, Capromyidae). Academische, WiesbadenGoogle Scholar
  75. Nishimura K, Abe MT (1988) Prey susceptibilities, prey utilization and variable attack efficiences of ural owls. Oecologia (Berl) 77:414–422. doi: 10.1007/BF00378053 Google Scholar
  76. Norrdahl K, Korpimäki E (1993) Predation and interspecific competition in two Microtus voles. Oikos 67:149–158. doi: 10.2307/3545105 Google Scholar
  77. Nyström J, Ekenstedt J, Angerbjörn A, Thulin L, Hellström P, Dalén L (2006) Golden Eagles on the Swedish mountain tundra—diet and breeding success in relation to prey fluctuations. Ornis Fenn 83:145–152Google Scholar
  78. Oaten A, Murdoch WW (1975) Switching, functional response, and stability in predator-prey systems. Am Nat 109:299–318. doi: 10.1086/282999 Google Scholar
  79. O’Donoghue M, Boutin S, Krebs CJ, Murray DL, Hofer EJ (1998) Behavioural responses of coyotes and lynx to the snowshoe hare cycle. Oikos 82:169–183. doi: 10.2307/3546927 Google Scholar
  80. Oksanen T (1993) Does predation prevent Norwegian lemmings from establishing permanent populations in lowland forests? In: Stenseth NC, Ims RA (eds) The biology of lemmings. Academic, London, pp 425–437Google Scholar
  81. Oksanen T, Henttonen H (1996) Dynamics of voles and small mustelids in the taiga landscape of northern Fennoscandia in relation to habitat quality. Ecography 19:432–443. doi: 10.1111/j.1600-0587.1996.tb00254.x Google Scholar
  82. Oksanen L, Moen J, Lundberg PA (1992) The time-scale problem in exploiter-victim models: does the solution lie in ratio-dependent exploitation? Am Nat 140:938–960. doi: 10.1086/285449 Google Scholar
  83. Oksanen T, Schneider M, Rammul Ü, Hambäck P, Aunapuu M (1999) Population fluctuations of voles in north Fennocandian tundra: contrasting dynamics in adjacent areas with different habitat composition. Oikos 86:463–478. doi: 10.2307/3546651 Google Scholar
  84. Oksanen T, Oksanen L, Schneider M, Aunapuu M (2001) Regulation, cycles and stability in northern carnivore-herbivore systems: back to first principles. Oikos 94:101–117. doi: 10.1034/j.1600-0706.2001.11315.x Google Scholar
  85. Oksanen T, Oksanen L, Dahlgren J, Olofsson J (2008) Arctic lemmings, Lemmus spp. and Dicrostonyx spp.: integrating ecological and evolutionary perspectives. Evol Ecol 10:415–434Google Scholar
  86. Olofsson J, Oksanen L, Callaghan T, Hulme PE, Oksanen T, Suominen O (2009) Herbivores inhibit climate-driven shrub expansion on the tundra. Glob Change Biol 15:2681–2693. doi: 10.1111/j.1365-2486.2009.01935.x Google Scholar
  87. Orians GH, Pearson NE (1979) On the theory of central place foraging. In: Horn DJ, Mitchell RD, Stairs GR (eds) Analysis of ecological systems. Ohio State University Press, Columbus, pp 155–177Google Scholar
  88. Øvrejorde A (2007) Calibrating abundance indices of small rodents in subarctic tundra. MSc thesis, University of Tromsø, TromsøGoogle Scholar
  89. Palma L, Beja P, Pais M, Cancela da Fonseca L (2006) Why do raptors take domestic prey? The case of Bonelli’s eagles and pigeons. J Appl Ecol 43:1075–1086. doi: 10.1111/j.1365-2664.2006.01213.x Google Scholar
  90. Pasanen S, Sulkava S (1971) On the nutritional biology of the rough-legged buzzard, Buteo lagopus Brünn., in Finnish Lapland. Aquilo Ser Zool 12:53–63Google Scholar
  91. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer Science, New YorkGoogle Scholar
  92. Pinheiro J, Bates D, DebRoy S, Sarkar D, The R Development Core Team (2013) nlme: Linear and monlinear mixed effects models. R package version 3.1-113Google Scholar
  93. Potapov ER (1993) Ecology and energetics of rough-legged buzzard in the Kolyma river Lowlands. PhD thesis, University of Oxford, OxfordGoogle Scholar
  94. Potapov ER (1997) What determines the population density and reproductive success of rough-legged buzzards, Buteo lagopus, in the Siberian tundra? Oikos 78:362–376Google Scholar
  95. Real LA (1977) The kinetics of functional response. Am Nat 111:289–300. doi: 10.1086/283161 Google Scholar
  96. Reid DG, Krebs CJ, Kenney AJ (1997) Patterns of predation on noncyclic lemmings. Ecol Monogr 67:89–108. doi: 10.2307/2963506 Google Scholar
  97. Rindorf A, Gislason H, Lewy P (2006) Prey switching of cod and whiting in the North Sea. Mar Ecol Prog Ser 325:243–253. doi: 10.3354/meps325243 Google Scholar
  98. Rohner C, Krebs CJ (1996) Owl predation on snowshoe hares: consequences of antipredator behaviour. Oecologia (Berl) 108:303–310. doi: 10.1007/BF00334655 Google Scholar
  99. Shifferman E, Eilam D (2004) Movement and direction of movement of a simulated prey affect the success rate in barn owl Tyto alba attack. J Avian Biol 35:111–116. doi: 10.1111/j.0908-8857.2004.03257.x Google Scholar
  100. Siivonen L (1976) Nordeuropas däggdjur, 2nd edn. Norstedt, StockholmGoogle Scholar
  101. Sinclair ARE, Pech RP (1996) Density dependence, stochasticity, compensation and predator regulation. Oikos 75:164–173. doi: 10.2307/3546240 Google Scholar
  102. Sinclair ARE, Pech RP, Dickman CR, Hik D, Mahon P, Newsome AE (1998) Predicting effects of predation on conservation of endangered prey. Conserv Biol 12:564–575. doi: 10.1046/j.1523-1739.1998.97030.x Google Scholar
  103. Solomon ME (1949) The natural control of animal populations. J Anim Ecol 18:1–35. doi: 10.2307/1578 Google Scholar
  104. Sonerud GA (1986) Effect of snow cover on seasonal changes in diet, habitat, and regional distribution of raptors that prey on small mammals in boreal zones of Fennoscandia. Holarct Ecol 9:33–47. doi: 10.1111/j.1600-0587.1986.tb01189.x Google Scholar
  105. Sonerud GA (1992) Functional responses of birds of prey: biases due to the load-size effect in central place foragers. Oikos 63:223–232. doi: 10.2307/3545382 Google Scholar
  106. Stenseth NC, Ims RA (1993) The biology of lemmings. Academic, LondonGoogle Scholar
  107. Stephens DW, Krebs CJ (1986) Foraging theory. Princeton University Press, PrincetonGoogle Scholar
  108. Sundell J, Ylönen H (2008) Specialist predator in a multi-species prey community: boreal voles and weasels. Integr Zool 3:51–63. doi: 10.1111/j.1749-4877.2008.00077.x PubMedGoogle Scholar
  109. Sundell J, Huitu O, Henttonen H, Kaikusalo A, Korpimäki E, Pietiäinen H, Saurola P, Hanski I (2004) Large-scale spatial dynamics of vole populations in Finland revealed by the breeding success of vole-eating avian predators. J Anim Ecol 73:167–178. doi: 10.1111/j.1365-2656.2004.00795.x Google Scholar
  110. Sylvén M (1978) Interspecific relations between sympatrically wintering common buzzards Buteo buteo and rough-legged buzzards Buteo lagopus. Ornis Scand 9:197–206. doi: 10.2307/3675882 Google Scholar
  111. Taitt MJ (1993) Adaptive coloration in Lemmus lemmus: why aren’t Norwegian lemmings brown? In: Stenseth NC, Ims RA (eds) The biology of lemmings. Academic, London, pp 439–445Google Scholar
  112. Taylor A (2009) Grey-sided vole dynamics in mountainous northern Sweden. MSc thesis, Stockholm University, StockholmGoogle Scholar
  113. Temple SA (1987) Do predators always capture substandard individuals disproportionately from prey populations? Ecology 68:669–674. doi: 10.2307/1938472 Google Scholar
  114. Turchin P (2003) Complex population dynamics. Princeton University Press, PrincetonGoogle Scholar
  115. Turchin P, Hanski I (1997) An empirically based model for latitudinal gradient in vole population dynamics. Am Nat 149:842–874. doi: 10.1086/286027 PubMedGoogle Scholar
  116. Turchin P, Oksanen L, Ekerholm P, Oksanen T, Henttonen H (2000) Are lemmings prey or predators? Nature 405:562–565. doi: 10.1038/35014595 PubMedGoogle Scholar
  117. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New YorkGoogle Scholar
  118. Wallin L (1967) The dorsal skin gland of the Norwegian lemming Lemmus l. lemmus (L.). Z Morph Ökol Tiere 59:83–90. doi: 10.1007/BF02427737 Google Scholar
  119. White GC, Anderson DR, Burnham KP, Otis DL (1982) Capture-recapture and removal methods for sampling closed populations. Los Alamos National Laboratory, Los AlamosGoogle Scholar
  120. Wiklund CG, Kjellén N, Isakson E (1998) Mechanisms determining the spatial distribution of microtine predators on the Arctic tundra. J Anim Ecol 67:91–98. doi: 10.1046/j.1365-2656.1998.00177.x Google Scholar
  121. Ydenberg R (2007) Provisioning. In: Stephens DW, Brown JS, Ydenberg RC (eds) Foraging. Behavior and ecology. University of Chicago Press, Chicago, pp 273–303Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of ZoologyStockholm UniversityStockholmSweden

Personalised recommendations