Advertisement

Oecologia

, Volume 174, Issue 4, pp 1097–1105 | Cite as

Senescence in cell oxidative status in two bird species with contrasting life expectancy

  • Pierre BizeEmail author
  • Sophie Cotting
  • Godefroy Devevey
  • Juan van Rooyen
  • Fabrice Lalubin
  • Olivier Glaizot
  • Philippe Christe
Physiological ecology - Original research

Abstract

Oxidative stress occurs when the production of reactive oxygen species (ROS) by an organism exceeds its capacity to mitigate the damaging effects of the ROS. Consequently, oxidative stress hypotheses of ageing argue that a decline in fecundity and an increase in the likelihood of death with advancing age reported at the organism level are driven by gradual disruption of the oxidative balance at the cellular level. Here, we measured erythrocyte resistance to oxidative stress in the same individuals over several years in two free-living bird species with contrasting life expectancy, the great tit (known maximum life expectancy is 15.4 years) and the Alpine swift (26 years). In both species, we found evidence for senescence in cell resistance to oxidative stress, with patterns of senescence becoming apparent as subjects get older. In the Alpine swift, there was also evidence for positive selection on cell resistance to oxidative stress, the more resistant subjects being longer lived. The present findings of inter-individual selection and intra-individual deterioration in cell oxidative status at old age in free-living animals support a role for oxidative stress in the ageing of wild animals.

Keywords

Ageing Antioxidant defences Free radical theory of ageing Life history theory Oxidative stress 

Notes

Acknowledgments

We are grateful to numerous students for their help in the field, to two anonymous reviewers for helpful comments, and to the Swiss National Science Foundation for financial support (grant no. 31003A_124988 to P. B. and 31003A_138187 to P. C.).

Supplementary material

442_2013_2840_MOESM1_ESM.doc (103 kb)
Supplementary material 1 (DOC 98 kb)
442_2013_2840_MOESM2_ESM.eps (3.3 mb)
Supplementary material 2 (EPS 3415 kb)

References

  1. Alonso-Alvarez C, Bertrand S, Devevey G, Prost J, Faivre B, Chastel O, Sorci G (2006) An experimental manipulation of life-history trajectories and resistance to oxidative stress. Evolution 60:1913–1924PubMedGoogle Scholar
  2. Alonso-Álvarez C, Pérez-Rodríguez L, García JT, Viñuela J, Mateo R (2010) Age and breeding effort as sources of individual variability in oxidative stress markers in a bird species. Physiol Biochem Zool 83:110–118PubMedCrossRefGoogle Scholar
  3. Angelier F, Weimerskirch H, Dano S, Chastel O (2007) Age, experience and reproductive performance in a long-lived bird: a hormonal perspective. Behav Ecol Sociobiol 61:611–621CrossRefGoogle Scholar
  4. Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581PubMedGoogle Scholar
  5. Bize P, Gasparini J, Klopfenstein A, Altwegg R, Roulin A (2006) Melanin-based coloration is a nondirectionally selected sex-specific signal of offspring development in the Alpine swift. Evolution 60:2370–2380PubMedCrossRefGoogle Scholar
  6. Bize P, Devevey G, Monaghan P, Doligez B, Christe P (2008) Fecundity and survival in relation to resistance to oxidative stress in a free living bird. Ecology 89:2584–2593PubMedCrossRefGoogle Scholar
  7. Bize P, Criscuolo F, Metcalfe NB, Nasir L, Monaghan P (2009) Telomere dynamics rather than age predict life expectancy in the wild. Proc R Soc Lond B 276:1679–1683CrossRefGoogle Scholar
  8. Brzezinska-Slebodzinska E (2001) Erythrocyte osmotic fragility test as the measure of defence against free radicals in rabbits of different age. Acta Vet Hung 49:413–419Google Scholar
  9. Cadenas E, Davies KJA (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29:222–230PubMedCrossRefGoogle Scholar
  10. Christe P, Glaizot O, Strepparava N, Devevey G, Fumagalli L (2012) Twofold cost of reproduction: an increase in parental effort leads to higher malarial parasitaemia and to a decrease in resistance to oxidative stress. Proc R Soc Lond B 279:1142–1149CrossRefGoogle Scholar
  11. Coulson JC, Fairweather JA (2001) Reduced reproductive performance prior to death in the Black-legged Kittiwake: senescence or terminal illness? J Avian Biol 32:146–152CrossRefGoogle Scholar
  12. Devevey G, Bruyndonckx N, von Houwald F, Studer-Thiersch A, Christe P (2010) Age-specific variation of resistance to oxidative stress in the greater flamingo (Phoenicopterus ruber roseus). J Ornithol 151:251–254CrossRefGoogle Scholar
  13. Dowling DK, Simmons LW (2009) Reactive oxygen species as universal constraints in life-history evolution. Proc R Soc Lond B 276:1737–1745CrossRefGoogle Scholar
  14. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247PubMedCrossRefGoogle Scholar
  15. Hamanaka RB, Chandel NS (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35:505–513PubMedCentralPubMedCrossRefGoogle Scholar
  16. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:208–300CrossRefGoogle Scholar
  17. Harvey PH, Greenwood PJ, Perrins CM, Martin AR (1979) Breeding success of great tits Parus major in relation to age of male and female parent. Ibis 121:216–219CrossRefGoogle Scholar
  18. Hattangadi SM, Lodish HF (2007) Regulation of erythrocyte lifespan: do reactive oxygen species set the clock? J Clin Invest 117:2075–2077PubMedCentralPubMedCrossRefGoogle Scholar
  19. Helle S, Lummaa V, Jokela J (2004) Accelerated immunosenescence in preindustrial twin mothers. Proc Natl Acad Sci USA 101:12391–12396PubMedCentralPubMedCrossRefGoogle Scholar
  20. Hulbert AJ (2008) The links between membrane composition, metabolic rate and lifespan. Comp. Biochem Physiol A Mol Int Physiol 150:196–203CrossRefGoogle Scholar
  21. Jones OR, Gaillard J-M, Tuljapurkar S, Alho JS, Armitage KB, Becker PH, Bize P, Brommer J, Charmantier A, Charpentier M, Clutton-Brock T, Dobson FS, Festa-Bianchet M, Gustafsson L, Jensen H, Jones CG, Lillandt B-G, McCleery R, Merilä J, Neuhaus P, Nicoll MAC, Norris K, Oli MK, Pemberton J, Pietiäinen H, Ringsby TH, Roulin A, Saether B-E, Setchell JM, Sheldon BC, Thompson PM, Weimerskirch H, Wickings EJ, Coulson T (2008) Senescence rates are determined by ranking on the fast–slow life-history continuum. Ecol Lett 11:664–673PubMedCrossRefGoogle Scholar
  22. Kiefer CR, Snyder LM (2000) Oxidation and erythrocyte senescence. Curr Opin Hematol 72:113–116CrossRefGoogle Scholar
  23. Lecomte VJ, Sorci G, Cornet S, Jaeger A, Faivre B, Arnoux E, Gaillard M, Trouvé C, Besson D, Chastel O, Weimerskirch H (2010) Patterns of aging in the long-lived wandering albatross. Proc Natl Acad Sci USA 107:6370–6375PubMedCentralPubMedCrossRefGoogle Scholar
  24. Lesgards JF, Durand P, Lassarre M, Stocker P, Lesgards G, Lanteaume A, Prost M, Lehucher-Michel MP (2002) Assessment of lifestyle effects on the overall antioxidant capacity of healthy subjects. Environ Health Perspect 110:479–486PubMedCentralPubMedCrossRefGoogle Scholar
  25. Losdat S, Helfenstein F, Blount JD, Marri V, Maronde L, Richner H (2013) Nestling erythrocyte resistance to oxidative stress predicts fledging success but not local recruitment in a wild bird. Biol Lett 13:1Google Scholar
  26. Marinkovic D, Zhang X, Yalcin S, Luciano JP, Brugnara C, Huber T, Ghaffari S (2007) Foxo3 is required for the regulation of oxidative stress in erythropoiesis. J Clin Invest 117:2133–2144PubMedCentralPubMedCrossRefGoogle Scholar
  27. Masoro EJ, Austad SN (2006) Handbook of the biology of aging. Academic Press, BurlingtonGoogle Scholar
  28. Moe B, Rønning B, Verhulst S, Bech C (2009) Metabolic ageing in individual zebra finches. Biol Lett 5:86–89PubMedCentralPubMedCrossRefGoogle Scholar
  29. Monaghan P, Metcalfe NB, Torres R (2008) Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecol Lett 12:75–92PubMedCrossRefGoogle Scholar
  30. Noguera JC, Kim S-Y, Velando A (2012) Pre-fledgling oxidative damage predicts recruitment in a long-lived bird. Biol Lett 8:61–63PubMedCentralPubMedCrossRefGoogle Scholar
  31. Nussey DH, Pemberton JM, Pilkington JG, Blount JD (2009) Life history correlates of oxidative damage in a free-living mammal population. Funct Ecol 23:809–817CrossRefGoogle Scholar
  32. Partridge L, Gems D (2002) Mechanisms of ageing: public or private? Nat Rev Gen 3:165–175CrossRefGoogle Scholar
  33. Patel KV, Semba RD, Ferrucci L, Newman AB, Fried LP, Wallace RB, Bandinelli S, Phillips CS, Yu B, Connelly S, Shlipak MG, Chaves PHM, Launer LJ, Ershler WB, Harris TB, Longo DL, Guralnik JM (2010) Red cell distribution width and mortality in older adults: a meta-analysis. J Gerontol A Biol Sci Med Sci 65A:258–265PubMedCentralCrossRefGoogle Scholar
  34. Payevsky VA (2006) Mortality rate and population density regulation in the great tit, Parus major: a review. Russ J Ecol 37:180–187CrossRefGoogle Scholar
  35. Rebke M, Coulson T, Becker PH, Vaupel JW (2010) Reproductive improvement and senescence in a long-lived bird. Proc Natl Acad Sci USA 107:7841–7846PubMedCentralPubMedCrossRefGoogle Scholar
  36. Reed TE, Kruuk LEB, Wanless S, Frederiksen M, Cunningham EJA, Harris MP (2008) Reproductive senescence in a long-lived seabird: rates of decline in late-life performance are associated with varying costs of early reproduction. Am Nat 171:E89–E101PubMedCrossRefGoogle Scholar
  37. Richards RS, Roberts TK, McGregor NR, Dunstan RH, Butt HL (1998) The role of erythrocytes in the inactivation of free radicals. Med Hypoth 50:363–367CrossRefGoogle Scholar
  38. Ricklefs RE (2010) Insights from comparative analyses of aging in birds and mammals. Aging Cell 9:273–284PubMedCentralPubMedCrossRefGoogle Scholar
  39. Ristow M, Schmeisser S (2011) Extending life span by increasing oxidative stress. Free Rad Biol Med 51:327–336PubMedCrossRefGoogle Scholar
  40. Rizzo AM, Corsetto PA, Montorfano G, Milani S, Zava S, Tavella S, Cancedda R, Berra B (2012) Effects of long-term space flight on erythrocytes and oxidative stress of rodents. PLoS ONE 7:e32361PubMedCentralPubMedCrossRefGoogle Scholar
  41. Röhme D (1981) Evidence for a relationship between longevity of mammalian species and life spans of normal fibroblasts in vitro and erythrocytes in vivo. Proc Natl Acad Sci USA 78:5009–5013PubMedCentralPubMedCrossRefGoogle Scholar
  42. Saino N, Caprioli M, Romano M, Boncoraglio G, Rubolini D, Ambrosini R, Bonisoli-Alquati A, Romano A (2011) Antioxidant defenses predict long-term survival in a passerine bird. PLoS ONE 6Google Scholar
  43. Selman C, Blount JD, Nussey DH, Speakman JR (2012) Oxidative damage, ageing, and life-history evolution: where now? Trends Ecol Evol 27:570–577PubMedCrossRefGoogle Scholar
  44. Sohal RS, Orr WC (2012) The redox stress hypothesis of aging. Free Rad Biol Med 52:539–555PubMedCentralPubMedCrossRefGoogle Scholar
  45. Stier A, Bize P, Schull Q, Zoll J, Singh F, Geny B, Gros F, Royer C, Massemin S, Criscuolo F (2013) Avian erythrocytes have functional mitochondria, opening novel perspectives for birds as animal models in the study of ageing. Front Zool 10:33PubMedCentralPubMedCrossRefGoogle Scholar
  46. Tacutu R, Craig T, Budovsky A, Wuttke D, Lehmann G, Taranukha D, Costa J, Fraifeld VE, de Magalhaes JP (2013) Human ageing genomic resources: integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res 41:D1027–D1033PubMedCentralPubMedCrossRefGoogle Scholar
  47. Tettamanti F, Witvliet W, Bize P (2012) Selection on age at first and at last reproduction in the long-lived Alpine Swift Apus melba. Ibis 154:338–344CrossRefGoogle Scholar
  48. Tsantes AE, Bonovas S, Travlou A, Sitaras NM (2006) Redox imbalance, macrocytosis, and RBC homeostasis Antiox. Redox Sign 8:1205–1216CrossRefGoogle Scholar
  49. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84PubMedCrossRefGoogle Scholar
  50. van de Pol M, Verhulst S (2006) Age-dependent traits: a new statistical model to separate within- and between-individual effects. Am Nat 167:766–773PubMedCrossRefGoogle Scholar
  51. Yu BP (2005) Membrane alteration as a basis of aging and the protective effects of calorie restriction. Mech Ageing Develop 126:1003CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pierre Bize
    • 1
    • 4
    Email author
  • Sophie Cotting
    • 1
  • Godefroy Devevey
    • 2
  • Juan van Rooyen
    • 1
  • Fabrice Lalubin
    • 1
  • Olivier Glaizot
    • 1
    • 3
  • Philippe Christe
    • 1
  1. 1.Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
  2. 2.Institute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
  3. 3.Museum of ZoologyLausanneSwitzerland
  4. 4.Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK

Personalised recommendations