, Volume 173, Issue 3, pp 1125–1142 | Cite as

Soil microbial responses to warming and increased precipitation and their implications for ecosystem C cycling

  • Naili Zhang
  • Weixing Liu
  • Haijun Yang
  • Xingjun Yu
  • Jessica L. M. Gutknecht
  • Zhe Zhang
  • Shiqiang Wan
  • Keping MaEmail author
Global change ecology - Original research


A better understanding of soil microbial ecology is critical to gaining an understanding of terrestrial carbon (C) cycle–climate change feedbacks. However, current knowledge limits our ability to predict microbial community dynamics in the face of multiple global change drivers and their implications for respiratory loss of soil carbon. Whether microorganisms will acclimate to climate warming and ameliorate predicted respiratory C losses is still debated. It also remains unclear how precipitation, another important climate change driver, will interact with warming to affect microorganisms and their regulation of respiratory C loss. We explore the dynamics of microorganisms and their contributions to respiratory C loss using a 4-year (2006–2009) field experiment in a semi-arid grassland with increased temperature and precipitation in a full factorial design. We found no response of mass-specific (per unit microbial biomass C) heterotrophic respiration to warming, suggesting that respiratory C loss is directly from microbial growth rather than total physiological respiratory responses to warming. Increased precipitation did stimulate both microbial biomass and mass-specific respiration, both of which make large contributions to respiratory loss of soil carbon. Taken together, these results suggest that, in semi-arid grasslands, soil moisture and related substrate availability may inhibit physiological respiratory responses to warming (where soil moisture was significantly lower), while they are not inhibited under elevated precipitation. Although we found no total physiological response to warming, warming increased bacterial C utilization (measured by BIOLOG EcoPlates) and increased bacterial oxidation of carbohydrates and phenols. Non-metric multidimensional scaling analysis as well as ANOVA testing showed that warming or increased precipitation did not change microbial community structure, which could suggest that microbial communities in semi-arid grasslands are already adapted to fluctuating climatic conditions. In summary, our results support the idea that microbial responses to climate change are multifaceted and, even with no large shifts in community structure, microbial mediation of soil carbon loss could still occur under future climate scenarios.


Carbon utilization Microbial biomass Microbial community composition Respiratory loss of soil carbon Semi-arid grassland 



We would like to thank both anonymous reviewers for their careful reviews of the manuscript. This study was conducted as part of a comprehensive research project (Global Change Multi-factor Experiment-Duolun) sponsored by the Institute of Botany, Chinese Academy of Sciences. This study was supported by grants from the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-JC401), the International Foundation for Science (IFS, C/4783-1) and the National Natural Science Foundation of China (30590382/C011108, 30925009). We wish to extend our thanks to the staff of the Duolun Restoration Ecology Experimentation and Demonstration Station for field sampling. We gratefully acknowledge Dr. Jie Bi for soil PLFA extraction, Prof. Shenglei Fu for GC analysis of the PLFA extracts, Dr. Qiong Ding for data analysis, Drs. Jianyang Xia and Yu Liang for their valuable suggestions. We would also like to thank Christine Verhille at the University of British Columbia for her assistance with English language and grammatical editing of the manuscript.

Supplementary material

442_2013_2685_MOESM1_ESM.pdf (245 kb)
Supplementary material 1 (PDF 244 kb)


  1. Adu JK, Oades JM (1978) Utilization of organic materials in soil aggregates by bacteria and fungi. Soil Biol Biochem 10:117–122. doi: 10.1016/0038-0717(78)90081-0 CrossRefGoogle Scholar
  2. Ågren GI, Hyvönen R, Nilsson T (2007) Are Swedish forest soils sinks or sources for CO2—model analyses based on forest inventory data. Biogeochemistry 82:217–227. doi: 10.1007/s10533-006-9064-0 Google Scholar
  3. Allison SD, Wallentein MD, Bradford MA (2010) Soil-carbon response to warming dependent on microbial physiology. Nat Geosci 3:336–340. doi: 10.1038/ngeo846 CrossRefGoogle Scholar
  4. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Mol Biol Rev 59:143–169Google Scholar
  5. Balser TC, Wixon D (2009) Investigating biological control over soil carbon temperature sensitivity. Glob Change Biol 15:2935–2949. doi: 10.1111/j.1365-2486.2009.01946.x CrossRefGoogle Scholar
  6. Balser TC, Gutknecht JLM, Liang C (2010) How will climate change impact soil microbial communities? In: Dixon GR, Tilston E (eds) Soil microbiology and sustainable crop. University of Reading Press, Reading, pp 373–397CrossRefGoogle Scholar
  7. Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814. doi: 10.1038/ismej.2008.58 PubMedCrossRefGoogle Scholar
  8. Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5:908–917. doi: 10.1038/ismej.2010.171 PubMedCrossRefGoogle Scholar
  9. Berg N, Steinberge Y (2008) Role of perennial plants in determining the activity of the microbial community in the Negev Desert ecosystem. Soil Biol Biochem 40:2686–2695. doi: 10.1016/j.soilbio.2008.07.019 CrossRefGoogle Scholar
  10. Bi J, Zhang NL, Liang Y, Yang HJ, Ma KP (2012) Interactive effects of water and nitrogen addition on soil microbial communities in a semiarid steppe. J Plant Ecol 5:320–329. doi: 10.1093/jpe/rtr046 Google Scholar
  11. Bond-Lamberty B, Thomson A (2010a) A global database of soil respiration data. Biogeosciences 7:1915–1926CrossRefGoogle Scholar
  12. Bond-Lamberty B, Thomson A (2010b) Temperature-associated increases in the global soil respiration record. Nature 464:579–582. doi: 10.1038/nature08930 PubMedCrossRefGoogle Scholar
  13. Borken W, Matzner E (2009) Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob Change Biol 15:808–824. doi: 10.1111/j.1365-2486.2008.01681.x CrossRefGoogle Scholar
  14. Bossio DA, Scow KM (1998) Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb Ecol 35:265–278. doi: 10.1007/s002489900082 PubMedCrossRefGoogle Scholar
  15. Bradford MA, Davies CA, Frey SD, Maddox TR, Melillo JM, Mohan JE, Reynolds JF, Treseder KK, Wallenstein MD (2008) Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett 11:1316–1327. doi: 10.1111/j.1461-0248.2008.01251.x PubMedCrossRefGoogle Scholar
  16. Bradford MA, Watts BW, Davies CA (2010) Thermal adaptation of heterotrophic soil respiration in laboratory microcosms. Glob Change Biol 16:1576–1588. doi: 10.1111/j.1365-2486.2009.02040.x CrossRefGoogle Scholar
  17. Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842. doi: 10.1016/0038-0717(85)90144-0 CrossRefGoogle Scholar
  18. Carney KM, Hungate BA, Drake BG, Megonigal JP (2007) Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proc Natl Acad Sci USA 104:4990–4995. doi: 10.1073/pnas.0610045104 PubMedCrossRefGoogle Scholar
  19. Classen AT, Boyle SI, Haskins KE, Overby ST, Hart SC (2003) Community-level physiological profiles of bacteria and fungi: plate type and incubation temperature influences on contrasting soils. FEMS Microb Ecol 44:319–328. doi: 10.1016/S0168-6496(03)00068-0 CrossRefGoogle Scholar
  20. Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013) The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Change Biol. doi: 10.1111/gcb.12113 Google Scholar
  21. Crowther TW, Bradford MA (2013) Thermal acclimation in widespread heterotrophic soil microbes. Ecol Lett. doi: 10.1111/ele.12069 PubMedGoogle Scholar
  22. Cruz-Martínez K, Suttle KB, Brodie EL, Power ME, Andersen GL, Banfield JF (2009) Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland. ISME J 3:738–744. doi: 10.1038/ismej.2009.16 PubMedCrossRefGoogle Scholar
  23. Evans S, Wallenstein M (2012) Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter? Biogeochemistry 109:101–116. doi: 10.1007/s10533-011-9638-3 CrossRefGoogle Scholar
  24. Frey SD, Drijber R, Smith H, Melillo J (2008) Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biol Biochem 40:2904–2907. doi: 10.1016/j.soilbio.2008.07.020 CrossRefGoogle Scholar
  25. Frostegård Å, Bååth E (1996) The use of phospholipids fatty acid to estimate bacterial and fungal biomass in soil. Biol Fert Soils 22:59–65. doi: 10.1007/BF00384433 CrossRefGoogle Scholar
  26. Gallardo A, Schlesinger WH (1995) Factors determining soil microbial biomass and nutrient immobilization in desert soils. Biogeochemistry 28:55–68. doi: 10.1007/BF02178061 CrossRefGoogle Scholar
  27. Garland JL, Mills A (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microb 57:2351–2359Google Scholar
  28. Gattinger A, Günthner A, Schloter M, Munch JC (2003) Characterisation of archaea in soils by polar lipid analysis. Acta Biotechnol 23:21–28. doi: 10.1002/abio.200390003 CrossRefGoogle Scholar
  29. Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251. doi: 10.1126/science.1061967 PubMedCrossRefGoogle Scholar
  30. Gomez E, Ferreras L, Toresani S (2006) Soil bacterial functional diversity as influenced by organic amendment application. Bioresour Technol 97:1484–1489. doi: 10.1016/j.biortech.2005.06.021 PubMedCrossRefGoogle Scholar
  31. Gregorich EC, Beare MH, Stoklas U, St-Georges P (2003) Biodegradability of soluble organic matter in maize-cropped soils. Geoderma 113:237–252. doi: 10.1016/S0016-7061(02)00363-4 CrossRefGoogle Scholar
  32. Gutknecht JLM, Field CB, Balser TC (2012) Variation in long-term microbial community response to simulated global change. Glob Change Biol 18:2256–2269. doi: 10.1111/j.1365-2486.2012.02686.x CrossRefGoogle Scholar
  33. Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146. doi: 10.1023/A:1006244819642 CrossRefGoogle Scholar
  34. Hartley IP, Hopkins DW, Garnett MH, Sommerkorn M, Wookey PA (2008) Soil microbial respiration in arctic soil does not acclimate to temperature. Ecol Lett 11:1092–1100. doi: 10.1111/j.1461-0248.2008.01223.x Google Scholar
  35. Hartley IP, Hopkins DW, Garnett MH, Sommerkorn M, Wookey PA (2009) No evidence for compensatory thermal adaptation of soil microbial respiration in the study of Bradford et al. (2008). Ecol Lett 12:E12–14. doi: 10.1111/j.1461-0248.2009.01300.x
  36. Hopkins DW, Gregorich EG (2005) Carbon as a substrate for soil organisms. In: Bardgett RD, Usher MB, Hopkins DW (eds) Biological diversity and function in soils. Cambridge University Press, Cambridge, pp 57–79CrossRefGoogle Scholar
  37. Hu S, Bruggen V (1997) Microbial dynamics associated with multiphasic decomposition of 14C-labeled cellulose in soil. Microb Ecol 33:134–143. doi: 10.1007/s002489900015 PubMedCrossRefGoogle Scholar
  38. Insam H (1997) A new set of substrates proposed for community characterization in environmental samples. In: Insam H, Rangger A (eds) Microbial communities: functional versus structural approaches. Springer, Berlin, pp 259–260CrossRefGoogle Scholar
  39. Jonasson S, Castro J, Michelsena A (2004) Litter, warming and plants affect respiration and allocation of soil microbial and plant C, N and P in Arctic mesocosms. Soil Biol Biochem 36:1129–1139. doi: 10.1016/j.soilbio.2004.02.023 CrossRefGoogle Scholar
  40. Kalbitz K, Schmetwitz J, Schwesig D, Matzer E (2003) Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma 113:273–291. doi: 10.1016/S0016-7061(02)00365-8 CrossRefGoogle Scholar
  41. Keiblinger KM, Hall EK, Wanek W, Szukics U, Hämmerle I, Ellersdorfer G, Sandra Böck, Strauss J, Sterflinger K, Richter A, Zechmeister-Boltenstern S (2010) The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency. FEMS Microbiol Ecol 73:430–440. doi: 10.1111/j.1574-6941.2010.00912.x PubMedGoogle Scholar
  42. Kelting DL, Burger JA, Edwards GS (1998) Estimating root respiration, microbial respiration in the rhizosphere, and root-free soil respiration in forest soils. Soil Biol Biochem 30:961–968. doi: 10.1016/S0038-0717(97)00186-7 CrossRefGoogle Scholar
  43. Konopka A, Oliver L, JrRF Turco (1998) The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microb Ecol 35:103–115. doi: 10.1007/s002489900065 PubMedCrossRefGoogle Scholar
  44. Lamb EG, Han S, Lanoil BD, Henry GR, Brummell ME, Banerjee S, Siciliano SD (2011) A high arctic soil ecosystem resists long-term environmental manipulations. Glob Change Biol 17:3187–3194. doi: 10.1111/j.1365-2486.2011.02431.x CrossRefGoogle Scholar
  45. Liu YX, Wu TW, Yan JH, Guo YF (2007) Prediction research of climate change trends over north China in the future 30 years. Acta Meteorol Sin 65:45–51Google Scholar
  46. Liu WX, Zhang Z, Wan SQ (2009) Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob Change Biol 15:184–195. doi: 10.1111/j.1365-2486.2008.01728.x CrossRefGoogle Scholar
  47. Liu YX, Li X, Zhang Q, Guo YF, Gao G, Wang JP (2010) Simulation of regional temperature and precipitation in the past 50 years and the next 30 years over China. Quatern Int 212:57–63. doi: 10.1016/j.quaint.2009.01.007 CrossRefGoogle Scholar
  48. Madan R, Pankhurst C, Hawke B, Smith S (2002) Use of fatty acids for identification of AM fungi and estimation of the biomass of AM spores in soil. Soil Biol Biochem 34:125–128. doi: 10.1016/S0038-0717(01)00151-1 CrossRefGoogle Scholar
  49. Manzoni S, Taylor P, Richter A, Porporato A, Ågren G (2012) Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol 196:79–91. doi: 10.1111/j.1469-8137.2012.04225.x PubMedCrossRefGoogle Scholar
  50. Miguel CS, Dulinski M, Tate RL (2007) Direct comparison of individual substrate utilization from a CLPP study: a new analysis for metabolic diversity data. Soil Biol Biochem 39:1870–1877. doi: 10.1016/j.soilbio.2007.01.039 CrossRefGoogle Scholar
  51. Mijangos I, Pérez R, Albizu I (2006) Effects of fertilization and tillage on soil biological parameters. Enzyme Microb Tech 40:100–106. doi: 10.1016/j.enzmictec.2005.10.043 CrossRefGoogle Scholar
  52. Milcu A, Thebault E, Scheu S, Eisenhauer N (2010) Plant diversity enhances the reliability of belowground processes. Soil Biol Biochem 42:2102–2110. doi: 10.1016/j.soilbio.2010.08.005 CrossRefGoogle Scholar
  53. Niu SL, Wu MY, Han Y, Xia JY, Li L, Wan SQ (2007) Water-mediated responses of ecosystem C fluxes to climatic change in a temperate steppe. New Phytol 177:209–219. doi: 10.1111/j.1469-8137.2007.02237.x PubMedGoogle Scholar
  54. Pinkart HC, Ringelberg DB, Piceno YM, Macnaughton SJ, White DC (2002) Biochemical approaches to biomass measurements and community structure analysis. In: Hurst CJ (ed) Manual of environmental microbiology. ASM, Washington, DC, pp 101–113Google Scholar
  55. Preston-Mafham J, Boddy L, Randerson PF (2002) Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles—a critique. FEMS Microb Ecol 42:1–14. doi: 10.1111/j.1574-6941.2002.tb00990.x Google Scholar
  56. Ringelberg DB, Stair JO, Almeida J, Norby RJ, O’Neill EG, White DC (1997) Consequences of rising atmospheric carbon dioxide levels for the belowground microbiota associated with white oak. J Environ Qual 26:495–503. doi: 10.2134/jeq1997.00472425002600020022x CrossRefGoogle Scholar
  57. Rinnan R, Michelsen A, Baath E, Jonasson S (2007) Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Glob Change Biol 13:28–39. doi: 10.1111/j.1365-2486.2006.01263.x CrossRefGoogle Scholar
  58. Rinnan R, Stark S, Tolvanen A (2009) Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath. J Ecol 97:788–800. doi: 10.1111/j.1365-2745.2009.01506.x CrossRefGoogle Scholar
  59. Schimel J (1995) Ecosystem consequences of microbial diversity and community structure. In: Chapin FS, Köner C (eds) Arctic and Alpine biodiversity: patterns, causes and ecosystem consequences. Springer, Berlin, pp 239–254CrossRefGoogle Scholar
  60. Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394. doi: 10.1890/06-0219 PubMedCrossRefGoogle Scholar
  61. Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8:779–790. doi: 10.1038/nrmicro2439 PubMedCrossRefGoogle Scholar
  62. Six J, Fre S, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569. doi: 10.2136/sssaj2004.0347 CrossRefGoogle Scholar
  63. Standing DB, Castro JIR, Prosser JI, Meharg A, Killham K (2005) Rhizosphere carbon flow: a driver of soil microbial diversity. In: Bardgett RD, Usher MB, Hopkins DW (eds) Biological diversity and function in soils. Cambridge University Press, Cambridge, pp 57–79Google Scholar
  64. Tiemann LK, Billings SA (2011) Changes in variability of soil moisture alter microbial community C and N resource use. Soil Biol Biochem 43:1837–1847. doi: 10.1016/j.soilbio.2011.04.020 CrossRefGoogle Scholar
  65. Timonen S, Bomberg M (2009) Archaea in dry soil environments. Phytochem Rev 8:505–518. doi: 10.1007/s11101-009-9137-5 CrossRefGoogle Scholar
  66. Todd-Brown K, Hopkins F, Kivlin S, Talbot J, Allison S (2012) A framework for representing microbial decomposition in coupled climate models. Biogeochemistry 109:19–33. doi: 10.1007/s10533-011-9635-6 CrossRefGoogle Scholar
  67. Treseder K, Balser T, Bradford M, Brodie E, Dubinsky E, Eviner V, Hofmockel K, Lennon J, Levine U, MacGregor B, Pett-Ridge J, Waldrop M (2012) Integrating microbial ecology into ecosystem models: challenges and priorities. Biogeochemistry 109:7–18. doi: 10.1007/s10533-011-9636-5 CrossRefGoogle Scholar
  68. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707. doi: 10.1016/0038-0717(87)90052-6 CrossRefGoogle Scholar
  69. Waldrop MP, Firestone MK (2004) Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions. Biogeochemistry 67:235–248. doi: 10.1023/B:BIOG.0000015321.51462.41 CrossRefGoogle Scholar
  70. White DC, Stair JO, Ringelberg DB (1996) Quantitative comparisons of in situ microbial biodiversity by signature biomarker analysis. J Ind Microbiol 17:185–196. doi: 10.1007/BF01574692 CrossRefGoogle Scholar
  71. William MA, Rice CW (2007) Seven years of enhanced water availability influences the physiological, structural, and functional attributes of a soil microbial community. Appl Soil Ecol 35:525–545. doi: 10.1016/j.apsoil.2006.09.014 Google Scholar
  72. Yang HJ, Wu MY, Liu WX, Zhang Z, Zhang NL, Wan SQ (2010) Community structure and composition in response to climate change in a temperate steppe. Glob Change Biol 17:452–465. doi: 10.1111/j.1365-2486.2010.02253.x CrossRefGoogle Scholar
  73. Yang HJ, Li Y, Wu MY, Zhang Z, Li LH, Wan SQ (2011) Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits. Glob Change Biol 17:2936–2944. doi: 10.1111/j.1365-2486.2011.02423.x CrossRefGoogle Scholar
  74. Young IM, Ritz KEG (2005) Carbon as a substrate for soil organisms. In: Bardgett RD, Usher MB, Hopkins DW (eds) Biological diversity and function in soils. Cambridge University Press, Cambridge, pp 36–38Google Scholar
  75. Zak DR, Ringelberg DB, Pregitzer KS, Randlett DL, White DC, Curtis PS (1996) Soil microbial communities beneath Populus grandidentata grown under elevated atmospheric CO2. Ecol Appl 6:257–262. doi: 10.2307/2269568 CrossRefGoogle Scholar
  76. Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84:2042–2050. doi:10.1890/0012-9658(2006)87[1659:MCCAFA]2.0.CO;2Google Scholar
  77. Zelles L (1997) Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35:275–294. doi: 10.1016/S0045-6535(97)00155-0 PubMedCrossRefGoogle Scholar
  78. Zhang W, Parker KM, Luo Y, Wan S, Wallance LL, Hu S (2005) Soil microbial responses to experimental warming and clipping in a tallgrass prairie. Glob Change Biol 11:266–277. doi: 10.1111/j.1365-2486.2005.00902.x CrossRefGoogle Scholar
  79. Zhao J, Wang XL, Shao YH, Xu GL, Fu SL (2011) Effects of vegetation removal on soil properties and decomposer organisms. Soil Biol Biochem 43:954–960CrossRefGoogle Scholar
  80. Zogg GP, Zak DR, Ringelberg DB, MacDonald NW, Pregitzer KS, White DC (1997) Compositional and functional shifts in microbial communities due to soil warming. Soil Sci Soc Am J 61:475–481. doi: 10.2136/sssaj1997.03615995006100020015x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Naili Zhang
    • 1
  • Weixing Liu
    • 1
  • Haijun Yang
    • 1
  • Xingjun Yu
    • 2
  • Jessica L. M. Gutknecht
    • 4
  • Zhe Zhang
    • 1
  • Shiqiang Wan
    • 3
  • Keping Ma
    • 1
    Email author
  1. 1.State Key Laboratory of Vegetation and Environmental Change, Institute of BotanyChinese Academy of SciencesBeijingChina
  2. 2.Forestry College of Beihua UniversityJilinChina
  3. 3.Key Laboratory of Plant Stress Biology, College of Life SciencesHenan UniversityKaifengChina
  4. 4.Department of Soil EcologyHelmholtz Centre for Environmental Research-UFZHalle (Saale)Germany

Personalised recommendations