, Volume 173, Issue 2, pp 431–438

Effects of delayed settlement on post-settlement growth and survival of scleractinian coral larvae

  • Erin M. Graham
  • Andrew H. Baird
  • Bette L. Willis
  • Sean R. Connolly
Population ecology - Original research


Demographic connectivity requires both the dispersal of individuals between sub-populations, and their subsequent contribution to population dynamics. For planktonic, non-feeding marine larvae, the capacity to delay settlement enables greater dispersal distances, but the energetic cost of delayed settlement has been shown to adversely impact post-settlement fitness in several taxa. Here, we assess whether delayed settlement influences mortality rates or growth rates for the first 6 weeks following settlement of the scleractinian coral, Acropora tenuis. Coral larvae that were settled at 2, 4, and 6 weeks after spawning, and then deployed in the field, showed negligible effects of delayed settlement on post-settlement survival and time to initial budding for colony formation. Between-cohort differences in budding rate appeared to be explained by temporal variation in the post-settlement acquisition of zooxanthellae. The potential for coral larvae to remain in the pelagic zone for increased periods of time with little to no effect on post-settlement survival and growth suggests that the capacity for delayed settlement is likely to have meaningful demographic consequences for broadcast-spawning reef-building corals, and that the predicted trade-off between delayed settlement and post-settlement fitness is less applicable to reef-building scleractinian corals than other taxa with non-feeding larvae.


Coral reefs Dispersal Connectivity Population dynamics Post-settlement processes 

Supplementary material

442_2013_2635_MOESM1_ESM.pdf (41 kb)
Supplementary material 1 (PDF 41 kb)


  1. Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with Image J. Biophotonics Int 11:36–42Google Scholar
  2. Anthony KRN, Connolly SR, Hoegh-Guldberg O (2007) Bleaching, energetics, and coral mortality risk: effects of temperature, light, and sediment regime. Limnol Oceanogr 52:716–726. doi:10.4319/lo.2007.52.2.0716 CrossRefGoogle Scholar
  3. Australian Institute of Marine Science (AIMS) (2011) Table generated 12th December 2011 using Reef Weather, Orpheus Island. Long Term Monitoring and Data Centre, AIMS. http://data.aims.gov.au/aimsrtds/station_data.xhtml?station=9
  4. Baird AH, Guest JR, Willis BL (2009) Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu Rev Ecol Evol Syst 40:551–571. doi:10.1146/annurev.ecolsys.110308.120220 CrossRefGoogle Scholar
  5. Bates D, Maechler M, Bolker B (2011) lme4: linear mixed-effects models using S4 classes. R package version 0.999375-41Google Scholar
  6. Bonte D et al (2012) Costs of dispersal. Biol Rev 87:290–312. doi:10.1111/j.1469-185X.2011.00201.x PubMedCrossRefGoogle Scholar
  7. Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev 80:205–225. doi:10.1017/S1464793104006645 PubMedCrossRefGoogle Scholar
  8. Buddemeier RW, Kinzie RA III (1976) Coral growth. Oceanogr Mar Biol 14:183–225Google Scholar
  9. Bureau of Meteorology (BOM) (2011) Table generated 12 December 2011 using Climate Data Online, Bureau of Meteorology. http://www.bom.gov.au/climate/data
  10. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  11. Clobert J, Danchin E, Dhondt AA, Nichols JD (eds) (2001) Dispersal. Oxford University Press, New YorkGoogle Scholar
  12. Coles SL, Jokiel PL (1978) Synergistic effects of temperature, salinity and light on the hermatypic coral Montipora verrucosa. Mar Biol 49:187–195. doi:10.1007/BF00391130 CrossRefGoogle Scholar
  13. Connolly SR, Baird AH (2010) Estimating dispersal potential for marine larvae: dynamic models applied to scleractinian corals. Ecology 91:3572–3583. doi:10.1890/10-0143.1 PubMedCrossRefGoogle Scholar
  14. Faxneld S, Jorgensen TL, Tedengren M (2010) Effects of elevated water temperature, reduced salinity and nutrient enrichment on the metabolism of the coral Turbinaria mesenterina. Estuar Coast Shelf Sci 88:482–487. doi:10.1016/j.ecss.2010.05.008 CrossRefGoogle Scholar
  15. Fukazawa H, Takami H, Kawamura T, Watanabe Y (2005) The effect of egg quality on larval period and postlarval survival of an abalone Haliotis discus hannai. J Shellfish Res 24:1141–1147. doi:10.2983/0730-8000(2005)24[1141:TEOEQO]2.0.CO;2Google Scholar
  16. Gosselin LA, Qian P-Y (1997) Juvenile mortality in benthic marine invertebrates. Mar Ecol Prog Ser 146:265–282. doi:10.3354/meps146265 CrossRefGoogle Scholar
  17. Graham EM, Baird AH, Connolly SR (2008) Survival dynamics of scleractinian coral larvae and implications for dispersal. Coral Reefs 27:529–539. doi:10.1007/s00338-008-0361-z CrossRefGoogle Scholar
  18. Graham EM, Baird AH, Connolly SR, Sewell MA, Willis BL (2013) Rapid declines in metabolism explain extended coral larval longevity. Coral Reefs. doi:10.1007/s00338-012-0999-4
  19. Grambsch PM, Therneau TM (1994) Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 81:515–526. doi:10.1093/biomet/81.3.515 CrossRefGoogle Scholar
  20. Harii S, Yasuda N, Rodriguez-Lanetty M, Irie T, Hidaka M (2009) Onset of symbiosis and distribution patterns of symbiotic dinoflagellates in the larvae of scleractinian corals. Mar Biol 156:1203–1212. doi:10.1007/s00227-009-1162-9 CrossRefGoogle Scholar
  21. Hunter E, Shimizu K, Fusetani N (1999) Role of protein in larval swimming and metamorphosis of Bugula neritina (Bryozoa: cheilostomatida). Mar Biol 133:701–707. doi:10.1007/s002270050511 CrossRefGoogle Scholar
  22. Jaeckle WB (1994) Rates of energy-consumption and acquisition by lecithotrophic larvae of Bugula neritina (Bryozoa, Cheilostomata). Mar Biol 119:517–523. doi:10.1007/BF00354313 CrossRefGoogle Scholar
  23. Kinlan BP, Gaines SD (2003) Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84:2007–2020. doi:10.2307/3450025 CrossRefGoogle Scholar
  24. Lambert G (2005) Ecology and natural history of the protochordates. Can J Zool 83:34–50. doi:10.1139/Z04-156 CrossRefGoogle Scholar
  25. Littman RA, van Oppen MJH, Willis BL (2008) Methods for sampling free-living Symbiodinium (zooxanthellae) and their distribution and abundance at Lizard Island (Great Barrier Reef). J Exp Mar Biol Ecol 364:48–53. doi:10.1016/j.jembe.2008.06.034 CrossRefGoogle Scholar
  26. Maldonado M, Young CM (1999) Effects of the duration of larval life on postlarval stages of the demosponge Sigmadocia caerulea. J Exp Mar Biol Ecol 232:9–21. doi:10.1016/S0022-0981(98)00076-8 CrossRefGoogle Scholar
  27. Marshall DJ, Pechenik JA, Keough MJ (2003) Larval activity levels and delayed metamorphosis affect post-larval performance in the colonial, ascidian Diplosoma listerianum. Mar Ecol Prog Ser 246:153–162. doi:10.3354/meps246153 CrossRefGoogle Scholar
  28. Miller SE (1993) Larval period and its influence on postlarval life-history—comparison of lecithotrophy and facultative planktotrophy in the aeolid nudibranch Phestilla sibogae. Mar Biol 117:635–645. doi:10.1007/BF00349776 CrossRefGoogle Scholar
  29. Morse ANC, Iwao K, Baba M, Shimoike K, Hayashibara T, Omori M (1996) An ancient chemosensory mechanism brings new life to coral reefs. Biol Bull 191:149–154. doi:10.2307/1542917 CrossRefGoogle Scholar
  30. Muenchow G (1986) Ecological use of failure time analysis. Ecology 67:246–250CrossRefGoogle Scholar
  31. Muscatine L, McCloskey LR, Marian RE (1981) Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol Oceanogr 26:601–611. doi:10.4319/lo.1981.26.4.0601 CrossRefGoogle Scholar
  32. Nishikawa A, Katoh M, Sakai K (2003) Larval settlement rates and gene flow of broadcast-spawning (Acropora tenuis) and planula-brooding (Stylophora pistillata) corals. Mar Ecol Prog Ser 256:87–97. doi:10.3354/meps256087 CrossRefGoogle Scholar
  33. Nozawa Y, Harrison PL (2005) Temporal settlement patterns of larvae of the broadcast spawning reef coral Favites chinensis and the broadcast spawning and brooding reef coral Goniastrea aspera from Okinawa, Japan. Coral Reefs 24:274–282. doi:10.1007/s00338-005-0476-4 CrossRefGoogle Scholar
  34. Onitsuka T, Kawamura T, Ohashi S, Iwanaga S, Horii T, Watanabe Y (2010) Effects of delayed metamorphosis and delayed post-settlement feeding on post-larval survival and growth of the abalone Haliotis diversicolor. Aquaculture 298:239–244. doi:10.1016/j.aquaculture.2009.11.009 CrossRefGoogle Scholar
  35. Pechenik JA (1999) On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Mar Ecol Prog Ser 177:269–297. doi:10.3354/meps177269 CrossRefGoogle Scholar
  36. Pechenik JA (2006) Larval experience and latent effects—metamorphosis is not a new beginning. Integr Comp Biol 46:323–333. doi:10.1093/icb/icj028 PubMedCrossRefGoogle Scholar
  37. Pechenik JA, Wendt DE, Jarrett JN (1998) Metamorphosis is not a new beginning. Bioscience 48:901–910. doi:10.2307/1313294 CrossRefGoogle Scholar
  38. Pinheiro JC, Bates MD, DebRoy S, Sarkar D, R Development Core Team (2011) nlme: linear and nonlinear mixed effects models. R package version 3.1-100Google Scholar
  39. Porter JW, Lewis SK, Porter KG (1999) The effect of multiple stressors on the Florida Keys coral reef ecosystem: a landscape hypothesis and a physiological test. Limnol Oceanogr 44:941–949. doi:10.4319/lo.1999.44.3_part_2.0941 CrossRefGoogle Scholar
  40. Przeslawski R, Ahyong S, Byrne M, Worheide G, Hutchings P (2008) Beyond corals and fish: the effects of climate change on noncoral benthic invertebrates of tropical reefs. Global Change Biol 14:2773–2795. doi:10.1111/j.1365-2486.2008.01693.x CrossRefGoogle Scholar
  41. R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  42. Richmond RH (1987) Energetics, competence, and long-distance dispersal of planula larvae of the coral Pocillopora damicornis. Mar Biol 93:527–533. doi:10.1007/BF00392790 CrossRefGoogle Scholar
  43. Roberts RD, Lapworth C (2001) Effect of delayed metamorphosis on larval competence, and post-larval survival and growth, in the abalone Haliotis iris Gmelin. J Exp Mar Biol Ecol 258:1–13. doi:10.1016/S0022-0981(00)00346-4 PubMedCrossRefGoogle Scholar
  44. Saunders MI, Metaxas A (2009) Effects of temperature, size, and food on the growth of Membranipora membranacea in laboratory and field studies. Mar Biol 156:2267–2276. doi:10.1007/s00227-009-1254-6 CrossRefGoogle Scholar
  45. Scheltema RS (1986) On dispersal and planktonic larvae of benthic invertebrates: an eclectic overview and summary of problems. Bull Mar Sci 39:290–322Google Scholar
  46. Shanks AL (2009) Pelagic larval duration and dispersal distance revisited. Biol Bull 216:373–385. doi:10.2307/25548167 PubMedGoogle Scholar
  47. Shanks AL, Grantham BA, Carr MH (2003) Propagule dispersal distance and the size and spacing of marine reserves. Ecol Appl 13:S159–S169CrossRefGoogle Scholar
  48. Takami H, Kawamura T, Yamashita Y (2002) Effects of delayed metamorphosis on larval competence, and postlarval survival and growth of abalone Haliotis discus hannai. Aquaculture 213:311–322. doi:10.1016/S0044-8486(02)00338-1 CrossRefGoogle Scholar
  49. Therneau T (2011) coxme: mixed effects Cox models. R package version 2.2-1Google Scholar
  50. Therneau T, Lumley T (2011) survival: survival analysis, including penalised likelihood. R package version 2.36-5Google Scholar
  51. Thorson G (1950) Reproductive and larval ecology of marine bottom invertebrates. Biol Rev Camb Philos Soc 25:1–45. doi:10.1111/j.1469-185X.1950.tb00585.x CrossRefGoogle Scholar
  52. Travis JMJ, et al. (2012) Modelling dispersal: an eco-evolutionary framework incorporating emigration, movement, settlement behaviour and the multiple costs involved. Methods Ecol Evol. doi:10.1111/j.2041-210X.2012.00193.x
  53. Wendt DE (1998) Effect of larval swimming duration on growth and reproduction of Bugula neritina (Bryozoa) under field conditions. Biol Bull 195:126–135CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Erin M. Graham
    • 1
  • Andrew H. Baird
    • 2
  • Bette L. Willis
    • 1
    • 2
  • Sean R. Connolly
    • 1
    • 2
  1. 1.School of Marine and Tropical BiologyJames Cook UniversityTownsvilleAustralia
  2. 2.ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleAustralia

Personalised recommendations