, Volume 173, Issue 1, pp 305–317 | Cite as

Fluctuating selection and immigration as determinants of the phenotypic composition of a population

  • Päivi M. Sirkiä
  • M. Virolainen
  • E. Lehikoinen
  • T. Laaksonen
Global change ecology - Original research


It is important to identify the factors that affect the evolutionary potential of populations to respond to environmental changes. Such processes are for example the ones affecting the amount of heritable phenotypic variation in a population. We examined factors explaining the wide phenotypic variation in the genetically determined black-brown dorsal colouration of male pied flycatchers (Ficedula hypoleuca) during a period of >50 years in a northern European breeding population. We demonstrate that the temperature-dependent relative breeding success of brown males predicts the inter-annual change in the proportion of the brown male phenotype. The proportion of brown males also appears to reflect immigration from Central Europe, where the brown type prevails due to local selection pressure. Warm springs in northern Central Europe had a positive effect on the proportion of the brown phenotype in the north in the early part of the study period, which suggests prolonged migration in favourable conditions. However, the association between warm springs and a high proportion of brown males has weakened from the 1950s to the present, which may explain why the proportion of the brown males in our study area decreased by a third during the period 1954 to 2008. This is likely a result of decreasing population size in Central Europe. These results demonstrate that temporal variation in environmental conditions is maintaining variation in the pied flycatcher male phenotype. They also indicate that climate warming has the potential to change the population composition both through temperature-dependent selection and environmental factors affecting long-distance immigration.


Climate warming Dispersal Micro-evolution Migration Phenotypic variation 



We are grateful to the lifelong pied flycatcher research of Professor Lars von Haartman. We thank the other members of Kimpari Bird Projects—Harri Ahola, Kari Ahola, Juhani Ahola, Pentti Ahola, Bo Ekstam, Teuvo Karstinen, Arto Laesvuori, Risto Suomalainen, Lasse Veijola—for the many hours spent conducting field work in the Siuntio area. We also thank Markus Ahola, Risto A. Väisänen, Martin Flade and Ulrich Köppen. The study was financially supported by the Ella and Georg Ehrnrooth Foundation (P. M. S.), the Turku University Foundation (P. M. S.), the Alfred Kordelin Foundation (P. M. S.), the Kone Foundation (E. L.), the Emil Aaltonen Foundation (T. L.) and the Academy of Finland (to T. L.).

Supplementary material

442_2013_2593_MOESM1_ESM.pdf (153 kb)
Supplementary material 1 (PDF 153 kb)
442_2013_2593_MOESM2_ESM.pdf (204 kb)
Supplementary material 2 (PDF 204 kb)


  1. Ahola M, Laaksonen T, Sippola K, Eeva T, Rainio K, Lehikoinen E (2004) Variation in climate warming along the migration route uncouples arrival and breeding dates. Glob Change Biol 10:1610–1617. doi: 10.1111/j.1365-2486.2004.00823.x CrossRefGoogle Scholar
  2. Ahola MP, Laaksonen T, Eeva T, Lehikoinen E (2007) Climate change can alter competitive relationships between resident and migratory birds. J Anim Ecol 76:1045–1052. doi: 10.1111/j.1365-2656.2007.01294.x PubMedCrossRefGoogle Scholar
  3. Alatalo RV, Gustafsson L, Lundberg A (1994) Male coloration and species recognition in sympatric flycatchers. Proc R Soc Lond B 256:113–118CrossRefGoogle Scholar
  4. Antoniazza S, Burri R, Fumagalli L, Goudet J, Roulin A (2010) Local adaptation maintains clinal variation in melanin-based coloration of European barn owls (Tyto alba). Evolution 64:1944–1954. doi: 10.1111/j.1558-5646.2010.00969.x PubMedGoogle Scholar
  5. Bairlein F, Winkel W (2001) Birds and climate change. In: Lozan JL, Grassl H, Hupfer P (eds) Climate of the 21st century: changes and risks. Wissenschaftliche Auswertungen, Hamburg, pp 278–282Google Scholar
  6. Bell G (2010) Fluctuating selection: the perpetual renewal of adaptation in variable environments. Phil Trans R Soc B 365:87–97. doi: 10.1098/rstb.2009.0150 PubMedCrossRefGoogle Scholar
  7. Berthold P (2001) Bird migration: a general survey, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  8. Both C, Visser ME (2001) Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411:296–298PubMedCrossRefGoogle Scholar
  9. Both C, Bouwhuis S, Lessells CM, Visser ME (2006) Climate change and population declines in a long-distance migratory bird. Nature 441:81–83. doi: 10.1038/nature04539 PubMedCrossRefGoogle Scholar
  10. Both C, van Asch M, Bijlsma RG, van den Burg AB, Visser ME (2009) Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J Anim Ecol 78:73–83. doi: 10.1111/j.1365-2656.2008.01458.x PubMedCrossRefGoogle Scholar
  11. Both C, Van Turnhout CAM, Bijlsma RG, Siepel H, Van Strien AJ, Foppen RPB (2010) Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proc R Soc Lond B 277:1259–1266. doi: 10.1098/rspb.2009.1525 CrossRefGoogle Scholar
  12. Both C, Robinson RA, van der Jeugd HP (2012) Long-distance dispersal in migratory pied flycatchers Ficedula hypoleuce is relatively common between the UK and the Netherlands. J Avian Biol 43:193–197. doi: 10.1111/j.1600-048X.2012.05721.x CrossRefGoogle Scholar
  13. Bronson DR, Gower ST, Tanner M, Van Herk I (2009) Effect of ecosystem warming on boreal black spruce bud burst and shoot growth. Glob Chang Biol 15:1534–1543. doi: 10.1111/j.1365-2486.2009.01845.x CrossRefGoogle Scholar
  14. Burnham KP, Anderson DR (2002) Model selection and inference. A practical information-theoretic approach. Springer, VerlagGoogle Scholar
  15. Byers DL (2005) Evolution in heterogeneous environments and the potential of maintenance of genetic variation in traits of adaptive significance. Genetica 123:107–124. doi: 10.1007/s10709-003-2721-5 PubMedCrossRefGoogle Scholar
  16. Chatfield C (1996) The analysis of time-series: an indroduction. Chapman & Hall, LondonGoogle Scholar
  17. Coppack T, Both C (2002) Predicting life-cycle adaptation of migratory birds to global climate change. Ardea 90:369–378Google Scholar
  18. de Jong PW, Brakefield PM (1998) Climate and change in clines for melanism in the two-spot ladybird, Adalia bipunctata (Coleoptera: Coccinellidae). Proc R Soc Lond B 265:39–43CrossRefGoogle Scholar
  19. Drost R (1936) Über das Brutkleid männlicher Trauerfliegenfänger, Muscicapa hypoleuca. Vogelzug 6:179–186Google Scholar
  20. Ducrest AL, Keller L, Roulin A (2008) Pleiotropy in the melanocortin system, coloration and behavioural syndromes. Trends Ecol Evol 23:502–510. doi: 10.1016/j.tree.2008.06.001 PubMedCrossRefGoogle Scholar
  21. Ellner S, Hairston NG (1994) Role of overlapping generations in maintaining genetic-variation in a fluctuating environment. Am Nat 143:403–417CrossRefGoogle Scholar
  22. Finch VA, Western D (1977) Cattle colors in pastoral herds—natural selection or social preference. Ecology 58:1384–1392CrossRefGoogle Scholar
  23. Forsman A, Hagman M (2009) Association of coloration mode with population declines and endangerment in Australian frogs. Conserv Biol 23:1535–1543. doi: 10.1111/j.1523-1739.2009.01244.x PubMedCrossRefGoogle Scholar
  24. Forsman A, Ahnesjö J, Caesar S, Karlsson M (2008) A model of ecological and evolutionary consequences of color polymorphism. Ecology 89:34–40PubMedCrossRefGoogle Scholar
  25. Frankham R, Ballou J, Briscoe D (2002) Indroduction to conservation genetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  26. Garant D, Kruuk LEB, McCleery RH, Sheldon BC (2007) The effects of environmental heterogeneity on multivariate selection on reproductive traits in female great tits. Evolution 61:1546–1559. doi: 10.1111/j.1558-5646.2007.00128.x PubMedCrossRefGoogle Scholar
  27. Glutz von Blotzheim UN, Bauer KM (1993) Handbuch der Vögel Mitteleuropas. Aula, WiesbadenGoogle Scholar
  28. Grant PR, Grant BR (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296:707–711. doi: 10.1126/science.1070315 PubMedCrossRefGoogle Scholar
  29. Gray SM, McKinnon JS (2007) Linking color polymorphism maintenance and speciation. Trends Ecol Evol 22:71–79. doi: 10.1016/j.tree.2006.10.005 PubMedCrossRefGoogle Scholar
  30. Grinkov V (2000) Conditions of stable maintenance of phenotypic population structure in case of breeding plumage colour variation in pied flycatcher (Ficedula hypoleuca, Pallas) males. PhD dissertation, Department of Vertebrate Zoology, Moscow State University, MoscowGoogle Scholar
  31. Hagemeijer EJM, Blair MJ (1997) The EBCC atlas of European breeding birds: their distribution and abundance. Poyser, LondonGoogle Scholar
  32. Hairston NG, Ellner SP, Geber MA, Yoshida T, Fox JA (2005) Rapid evolution and the convergence of ecological and evolutionary time. Ecol Lett 8:1114–1127. doi: 10.1111/j.1461-0248.2005.00812.x CrossRefGoogle Scholar
  33. Harcourt AH (2009) White wolves can stand the heat. Science 324:1142–1143CrossRefGoogle Scholar
  34. Hendry AP et al (2010) Evolutionary biology in biodiversity science, conservation, and policy: a call to action. Evolution 64:1517–1528. doi: 10.1111/j.1558-5646.2010.00947.x PubMedGoogle Scholar
  35. Hoekstra HE, Drumm KE, Nachman MW (2004) Ecological genetics of adaptive color polymorphism in pocket mice: geographic variation in selected and neutral genes. Evolution 58:1329–1341PubMedGoogle Scholar
  36. Huhta E, Siikamäki P (1997) Small scale geographical variation in plumage colour of pied flycatcher males. J Avian Biol 28:92–94CrossRefGoogle Scholar
  37. Ilyina TA, Ivankina EV (2001) Seasonal variation of singing activity and relative effect of the advertising behaviour of males with different plumage colour in the pied flycatcher Ficedula hypoleuca. Acta Ornithol 36:85–89CrossRefGoogle Scholar
  38. Ims R, Hjermann D (2001) Condition-dependent dispersal. In: Clobert J, Danchin E, Dhondt A, Nichols J (eds) Dispersal. Oxford University, Oxford, pp 203–216Google Scholar
  39. Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108. doi: 10.1016/j.tree.2003.10.013 PubMedCrossRefGoogle Scholar
  40. Johnston RF, Selander RK (1964) House sparrow: rapid evolution of races in North America. Science 144:548–550PubMedCrossRefGoogle Scholar
  41. Kalela O (1952) Changes in the geographic distribution of Finnish birds and mammals in relation to recent changes in climate. Fennia 75:38–51Google Scholar
  42. Karell P, Ahola K, Karstinen T, Valkama J, Brommer JE (2011) Climate change drives microevolution in a wild bird. Nat Commun 2:1–7. doi: 10.1038/ncomms1213 CrossRefGoogle Scholar
  43. Karlsson L, Persson K, Walinder G (1986) Ålders och könsbestämning av svartvit flugsnappare Ficedula hypoleuca. Vår Fågelvärld 45:131–146Google Scholar
  44. Kassen R (2002) The experimental evolution of specialists, generalists, and the maintenance of diversity. J Evol Biol 15:173–190CrossRefGoogle Scholar
  45. Kinnison MT, Hendry AP (2001) The pace of modern life II: from rates of contemporary microevolution to pattern and process. Genetica 112:145–164PubMedCrossRefGoogle Scholar
  46. Král M, Järvi T, Bičík V (1988) Inter-specific aggression between the collared flycatcher and the pied flycatcher: the selective agent for the evolution of light-coloured male pied flycatcher populations? Ornis Scand 19:287–289CrossRefGoogle Scholar
  47. Laaksonen T, Ahola M, Eeva T, Väisänen RA, Lehikoinen E (2006) Climate change, migratory connectivity and changes in laying date and clutch size of the pied flycatcher. Oikos 114:277–290CrossRefGoogle Scholar
  48. Lehtonen PK et al (2009) Geographic patterns of genetic differentiation and plumage colour variation are different in the pied flycatcher (Ficedula hypoleuca). Mol Ecol 18:4463–4476. doi: 10.1111/j.1365-294X.2009.04364.x PubMedCrossRefGoogle Scholar
  49. Lundberg A, Alatalo RV (1992) The pied flycatcher. Poyser, LondonGoogle Scholar
  50. Massot M, Clobert J, Ferriere R (2008) Climate warming, dispersal inhibition and extinction risk. Glob Chang Biol 14:461–469. doi: 10.1111/j.1365-2486.2007.01514.x CrossRefGoogle Scholar
  51. McAdam AG, Boutin S (2003) Variation in viability selection among cohorts of juvenile red squirrels (Tamiasciurus hudsonicus). Evolution 57:1689–1697PubMedGoogle Scholar
  52. Meunier J, Pinto SF, Burri R, Roulin A (2011) Eumelanin-based coloration and fitness parameters in birds: a meta-analysis. Behav Ecol Sociobiol 65:559–567. doi: 10.1007/s00265-010-1092-z CrossRefGoogle Scholar
  53. Møller AP, Flensted-Jensen E, Mardal W (2006) Dispersal and climate change: a case study of the Arctic tern Sterna paradisaea. Glob Change Biol 12:2005–2013. doi: 10.1111/j.1365-2486.2006.01216.x CrossRefGoogle Scholar
  54. Newton I (2008) Migration ecology of birds. Academic Press, AmsterdamGoogle Scholar
  55. Nietschke BS, Magarey RD, Borchert DM, Calvin DD, Jones E (2007) A developmental database to support insect phenology models. Crop Prot 26:1444–1448. doi: 10.1016/j.cropro.2006.12.006 CrossRefGoogle Scholar
  56. Nussey DH, Postma E, Gienapp P, Visser ME (2005) Selection on heritable phenotypic plasticity in a wild bird population. Science 310:304–306. doi: 10.1126/science.1117004 PubMedCrossRefGoogle Scholar
  57. Piault R, Gasparini J, Bize P, Jenni-Eiermann S, Roulin A (2009) Pheomelanin-based coloration and the ability to cope with variation in food supply and parasitism. Am Nat 174:548–556. doi: 10.1086/605374 PubMedCrossRefGoogle Scholar
  58. Punzalan D, Rodd FH, Rowe L (2008) Sexual selection mediated by the thermoregulatory effects of male colour pattern in the ambush bug Phymata americana. Proc R Soc Lond B 275:483–492. doi: 10.1098/rspb.2007.1585 CrossRefGoogle Scholar
  59. Røskaft E, Järvi T (1992) Interspecific competition and the evolution of plumage-color variation in 3 closely related old-word flycatchers Ficedula spp. J Zool 228:521–532CrossRefGoogle Scholar
  60. Røskaft E, Järvi T, Nyholm NEI, Virolainen M, Winkel W, Zang H (1986) Geographic variation in secondary sexual plumage color characteristics of the male pied flycatcher. Ornis Scand 17:293–298CrossRefGoogle Scholar
  61. Roulin A (2004) The evolution, maintenance and adaptive function of genetic colour polymorphism in birds. Biol Rev 79:815–848. doi: 10.1017/S1464793104006487 PubMedCrossRefGoogle Scholar
  62. Roulin A, Gasparini J, Bize P, Ritschard M, Richner H (2008) Melanin-based colorations signal strategies to cope with poor and rich environments. Behav Ecol Sociobiol 62:507–519. doi: 10.1007/s00265-007-0475-2 CrossRefGoogle Scholar
  63. Roulin A, Altwegg R, Jensen H, Steinsland I, Schaub M (2010) Sex-dependent selection on an autosomal melanic female ornament promotes the evolution of sex ratio bias. Ecol Lett 13:616–626. doi: 10.1111/j.1461-0248.2010.01459.x PubMedCrossRefGoogle Scholar
  64. Roulin A, Antoniazza S, Burri R (2011a) Spatial variation in the temporal change of male and female melanic ornamentation in the barn owl. J Evol Biol 24:1403–1409. doi: 10.1111/j.1420-9101.2011.02272.x PubMedCrossRefGoogle Scholar
  65. Roulin A, Burri R, Antoniazza S (2011b) Owl melanin-based plumage redness is more frequent near than away from the equator: implications on the effect of climate change on biodiversity. Biol J Linn Soc 102:573–582CrossRefGoogle Scholar
  66. Sætre GP, Sæther SA (2010) Ecology and genetics of speciation in Ficedula flycatchers. Mol Ecol 19:1091–1106. doi: 10.1111/j.1365-294X.2010.04568.x PubMedCrossRefGoogle Scholar
  67. Sætre GP, Král M, Bičík V (1993) Experimental-evidence for female mimicry in sympatric Ficedula flycatchers. Evolution 47:939–945CrossRefGoogle Scholar
  68. Sætre GP, Moum T, Bureš S, Král M, Adamjan M, Moreno J (1997) A sexually selected character displacement in flycatchers reinforces premating isolation. Nature 387:589–592CrossRefGoogle Scholar
  69. Sætre GP, Post E, Král M (1999) Can environmental fluctuation prevent competitive exclusion in sympatric flycatchers? Proc R Soc Lond B 266:1247–1251CrossRefGoogle Scholar
  70. Saino N et al (2011) Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proc R Soc Lond B 278:733–738. doi: 10.1098/rspb.2010.1592 CrossRefGoogle Scholar
  71. Schroeder J, Lourenço PM, Hooijmeijer J, Both C, Piersma T (2009) A possible case of contemporary selection leading to a decrease in sexual plumage dimorphism in a grassland-breeding shorebird. Behav Ecol 20:797–807. doi: 10.1093/beheco/arp063 CrossRefGoogle Scholar
  72. Sirkiä PM, Virolainen M, Laaksonen T (2010) Melanin coloration has temperature-dependent effects on breeding performance that may maintain phenotypic variation in a passerine bird. J Evol Biol 23:2385–2396. doi: 10.1111/j.1420-9101.2010.02100.x PubMedCrossRefGoogle Scholar
  73. Slatkin M (1987) Gene flow and the geographic structure of natural-populations. Science 236:787–792PubMedCrossRefGoogle Scholar
  74. Svärdson G (1949) Competition and habitat selection in birds. Oikos 1:157–174CrossRefGoogle Scholar
  75. Svensson L (1992) Identification guide to European passerines. Märsta, StockholmGoogle Scholar
  76. Tank A et al (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European climate assessment. Int J Climatol 22:1441–1453. doi: 10.1002/joc.773 CrossRefGoogle Scholar
  77. van Asch M, Visser ME (2007) Phenology of forest caterpillars and their host trees: the importance of synchrony. Annu Rev Entomol 52:37–55. doi: 10.1146/annurev.ento.52.110405.091418 PubMedCrossRefGoogle Scholar
  78. von Haartman L (1951) Successive polygamy. Behaviour 3:256–274CrossRefGoogle Scholar
  79. von Haartman L (1990) Breeding time of pied flycatcher Ficedula hypoleuca. In: Blondel J, Gosler A, Lebreton J-D, McCleery R (eds) Population biology of passerine birds. An integrated approach. Springer, BerlinGoogle Scholar
  80. Vysotsky VG (1994) An analysis of some cases of long-distance dispersal in the pied flycatcher Ficedula hypoleuca. Russ J Ornithol 3:207–212Google Scholar
  81. West PM, Packer C (2002) Sexual selection, temperature, and the lion’s mane. Science 297:1339–1343PubMedCrossRefGoogle Scholar
  82. Wielgolaski FE (1999) Starting dates and basic temperatures in phenological observations of plants. Int J Biometeorol 42:158–168CrossRefGoogle Scholar
  83. Winkel W, Winkel D (1995) Schwarz gefärbte Trauerschnäpper-Männchen (Ficedula hypoleuca) aus England und Schweden als Brutvögel in Norddeutschland. Vogelwarte 38:109–111Google Scholar
  84. Zink R, Remsen JVj (1986) Evolutionary processes and patterns of geographic variation in birds. Curr Ornithol 4:1–69Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Päivi M. Sirkiä
    • 1
  • M. Virolainen
    • 2
  • E. Lehikoinen
    • 1
  • T. Laaksonen
    • 1
    • 3
  1. 1.Section of Ecology, Department of BiologyUniversity of TurkuTurkuFinland
  2. 2.KirkkonummiFinland
  3. 3.Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland

Personalised recommendations