Oecologia

, Volume 173, Issue 1, pp 223–237 | Cite as

A comparison of the strength of biodiversity effects across multiple functions

  • Eric Allan
  • Wolfgang W. Weisser
  • Markus Fischer
  • Ernst-Detlef Schulze
  • Alexandra Weigelt
  • Christiane Roscher
  • Jussi Baade
  • Romain L. Barnard
  • Holger Beßler
  • Nina Buchmann
  • Anne Ebeling
  • Nico Eisenhauer
  • Christof Engels
  • Alexander J. F. Fergus
  • Gerd Gleixner
  • Marlén Gubsch
  • Stefan Halle
  • Alexandra M. Klein
  • Ilona Kertscher
  • Annely Kuu
  • Markus Lange
  • Xavier Le Roux
  • Sebastian T. Meyer
  • Varvara D. Migunova
  • Alexandru Milcu
  • Pascal A. Niklaus
  • Yvonne Oelmann
  • Esther Pašalić
  • Jana S. Petermann
  • Franck Poly
  • Tanja Rottstock
  • Alexander C. W. Sabais
  • Christoph Scherber
  • Michael Scherer-Lorenzen
  • Stefan Scheu
  • Sibylle Steinbeiss
  • Guido Schwichtenberg
  • Vicky Temperton
  • Teja Tscharntke
  • Winfried Voigt
  • Wolfgang Wilcke
  • Christian Wirth
  • Bernhard Schmid
Community ecology - Original research

Abstract

In order to predict which ecosystem functions are most at risk from biodiversity loss, meta-analyses have generalised results from biodiversity experiments over different sites and ecosystem types. In contrast, comparing the strength of biodiversity effects across a large number of ecosystem processes measured in a single experiment permits more direct comparisons. Here, we present an analysis of 418 separate measures of 38 ecosystem processes. Overall, 45 % of processes were significantly affected by plant species richness, suggesting that, while diversity affects a large number of processes not all respond to biodiversity. We therefore compared the strength of plant diversity effects between different categories of ecosystem processes, grouping processes according to the year of measurement, their biogeochemical cycle, trophic level and compartment (above- or belowground) and according to whether they were measures of biodiversity or other ecosystem processes, biotic or abiotic and static or dynamic. Overall, and for several individual processes, we found that biodiversity effects became stronger over time. Measures of the carbon cycle were also affected more strongly by plant species richness than were the measures associated with the nitrogen cycle. Further, we found greater plant species richness effects on measures of biodiversity than on other processes. The differential effects of plant diversity on the various types of ecosystem processes indicate that future research and political effort should shift from a general debate about whether biodiversity loss impairs ecosystem functions to focussing on the specific functions of interest and ways to preserve them individually or in combination.

Keywords

Bottom-up effects Carbon cycling Ecological synthesis Ecosystem processes Grasslands Jena experiment Nitrogen cycling 

Supplementary material

442_2012_2589_MOESM1_ESM.doc (201 kb)
Supplementary material 1 (DOC 201 kb)

References

  1. Allan E, van Ruijven J, Crawley MJ (2010) Foliar fungal pathogens and grassland biodiversity. Ecology 91:2572–2582PubMedCrossRefGoogle Scholar
  2. Allan E, Weisser W, Weigelt A, Roscher C, Fischer M, Hillebrand H (2011) More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proc Natl Acad Sci USA 108:17034–17039PubMedCrossRefGoogle Scholar
  3. Baayen RH, Davidson DJ, Bates DM (2008) Mixed-effects modeling with crossed random effects for subjects and items. J Mem Lang 59:390–412CrossRefGoogle Scholar
  4. Balvanera P, Pfisterer AB, Buchmann N, He J, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156PubMedCrossRefGoogle Scholar
  5. Bates D, Maechler M, Bolker BM (2011) Lme4: linear mixed-effects models using S4 classes 0.999375-42Google Scholar
  6. Bessler H, Temperton VM, Roscher C, Buchmann N, Schmid B, Schulze E, Weisser WW, Engels C (2009) Aboveground overyielding in grassland mixtures is associated with reduced biomass partitioning to belowground organs. Ecology 90:1520–1530PubMedCrossRefGoogle Scholar
  7. Blüthgen N, Klein A (2011) Functional complementarity and specialisation: the role of biodiversity in plant–pollinator interactions. Basic Appl Ecol 12:282–291CrossRefGoogle Scholar
  8. Borer ET, Seabloom EW, Tilman D (2012) Plant diversity controls arthropod biomass and temporal stability. Ecol Lett 15:1457–1464PubMedCrossRefGoogle Scholar
  9. Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992PubMedCrossRefGoogle Scholar
  10. Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ (2007) Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc Natl Acad Sci USA 104:18123–18128PubMedCrossRefGoogle Scholar
  11. Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE, Duffy E, Gamfeldt L, Balvanera P, O’Connor MI, Gonzalez A (2011) The functional role of producer diversity in ecosystems. Am J Bot 98:572–592PubMedCrossRefGoogle Scholar
  12. Carson WP, Cronin JP, Long ZT (2004) A general rule for predicting when insects will have strong top-down effects on plant communities: on the relationship between insect outbreaks and host concentration. In: Weisser WW, Siemann E (eds) Insects and ecosystem function. Springer, BerlinGoogle Scholar
  13. Craine JM, Tilman D, Wedin D, Reich P, Tjoelker M, Knops J (2002) Functional traits, productivity and effects on nitrogen cycling of 33 grassland species. Funct Ecol 16:563–574CrossRefGoogle Scholar
  14. Crawley MJ (2007) The R book. Wiley, ChichesterCrossRefGoogle Scholar
  15. de Deyn GB, van der Putten WH (2005) Linking aboveground and belowground diversity. Trends Ecol Evol 20:625–633PubMedCrossRefGoogle Scholar
  16. de Kroon H, Hendriks M, van Ruijven J, Ravenek J, Padilla FM, Jongejans E, Visser EJ, Mommer L (2012) Root responses to nutrients and soil biota: drivers of species coexistence and ecosystem productivity. J Ecol 100:6–15CrossRefGoogle Scholar
  17. Eisenhauer N, Beßler H, Engels C, Gleixner G, Habekost M, Milcu A, Partsch S, Sabais AC, Scherber C, Steinbeiss S, Weigelt A, Weisser WW, Scheu S (2010) Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91:485–496PubMedCrossRefGoogle Scholar
  18. Eisenhauer N, Milcu A, Sabais AC, Bessler H, Brenner J, Engels C, Klarner B, Maraun M, Partsch S, Roscher C, Schonert F, Temperton VM, Thomisch K, Weigelt A, Weisser WW, Scheu S (2011) Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term. PLoS ONE 6:e16055PubMedCrossRefGoogle Scholar
  19. Fornara DA, Tilman D (2008) Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol 96:314–322CrossRefGoogle Scholar
  20. Gurevitch J, Hedges LV (1999) Statistical issues in ecological meta-analyses. Ecology 80:1142–1149CrossRefGoogle Scholar
  21. Haddad NM, Crutsinger GM, Gross K, Haarstad J, Knops JM, Tilman D (2009) Plant species loss decreases arthropod diversity and shifts trophic structure. Ecol Lett 12:1029–1039PubMedCrossRefGoogle Scholar
  22. Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature 448:188–190PubMedCrossRefGoogle Scholar
  23. Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Hogberg P, Huss-Danell K, Joshi J, Jumpponen A, Korner C, Leadley PW, Loreau M, Minns A, Mulder CP, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras AS, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123–1127PubMedCrossRefGoogle Scholar
  24. Hirose T, Werger MJ (1995) Canopy structure and photon flux partitioning among species in a herbaceous plant community. Ecology 76:466–474CrossRefGoogle Scholar
  25. Hooper DU, Vitousek PM (1998) Effects of plant composition and diversity on nutrient cycling. Ecol Monogr 68:121–149CrossRefGoogle Scholar
  26. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35CrossRefGoogle Scholar
  27. Hooper DU, Adair EC, Cardinale BJ, Byrnes JE, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor MI (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–108PubMedGoogle Scholar
  28. Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, Scherer-Lorenzen M, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Zavaleta ES, Loreau M (2011) High plant diversity is needed to maintain ecosystem services. Nature 477:199–202PubMedCrossRefGoogle Scholar
  29. Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411CrossRefGoogle Scholar
  30. Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808PubMedCrossRefGoogle Scholar
  31. Manning P, Newington JE, Robson HR, Saunders M, Eggers T, Bradford MA, Bardgett RD, Bonkowski M, Ellis RJ, Gange AC, Grayston SJ, Kandeler E, Marhan S, Reid E, Tscherko D, Godfray HC, Rees M (2006) Decoupling the direct and indirect effects of nitrogen deposition on ecosystem function. Ecol Lett 9:1015–1024PubMedCrossRefGoogle Scholar
  32. Maron JL, Marler M, Klironomos JN, Cleveland CC (2010) Soil fungal pathogens and the relationship between plant diversity and productivity. Ecol Lett 14:36–41PubMedCrossRefGoogle Scholar
  33. Marquard E, Weigelt A, Roscher C, Gubsch M, Lipowsky A, Schmid B (2009) Positive biodiversity–productivity relationship due to increased plant density. J Ecol 97:696–704CrossRefGoogle Scholar
  34. Oelmann Y, Wilcke W, Temperton VM, Buchmann N, Roscher C, Schumacher J, Schulze ED, Weisser WW (2007) Soil and plant nitrogen pools as related to plant diversity in an experimental grassland. Soil Sci Soc Am J 71:720–729CrossRefGoogle Scholar
  35. Oelmann Y, Buchmann N, Gleixner G, Habekost M, Roscher C, Rosenkranz S, Schulze E, Steinbeiss S, Temperton VM, Weigelt A, Weisser WW, Wilcke W (2011) Plant diversity effects on aboveground and belowground N pools in temperate grassland ecosystems: development in the first 5 years after establishment. Glob Biogeochem Cycles 25:GB2014Google Scholar
  36. Pacala SW, Kinzig A (2001) Introduction to theory and the common ecosystem model. In: Kinzig A, Pacala S, Tilman D (eds) The functional consequences of biodiversity: empirical progress and theoretical extensions. Princeton University Press, Princeton, pp 169–174Google Scholar
  37. Palmborg C, Scherer-Lorenzen M, Jumpponen A, Carlsson G, Huss-Danell K, Hogberg P (2005) Inorganic soil nitrogen under grassland plant communities of different species composition and diversity. Oikos 110:271–282CrossRefGoogle Scholar
  38. Proulx R, Wirth C, Voigt W, Weigelt A, Roscher C, Attinger S, Baade J, Barnard RL, Buchmann N, Buscot F, Eisenhauer N, Fischer M, Gleixner G, Halle S, Hildebrandt A, Kowalski E, Kuu A, Lange M, Milcu A, Niklaus PA, Oelmann Y, Rosenkranz S, Sabais A, Scherber C, Scherer-Lorenzen M, Scheu S, Schulze E, Schumacher J, Schwichtenberg G, Soussana J, Temperton VM, Weisser WW, Wilcke W, Schmid B (2010) Diversity promotes temporal stability across levels of ecosystem organization in experimental grasslands. PLoS ONE 5:e13382PubMedCrossRefGoogle Scholar
  39. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  40. Reich PB, Tilman D, Isbell F, Mueller K, Hobbie SE, Flynn DF, Eisenhauer N (2012) Impacts of biodiversity loss escalate through time as redundancy fades. Science 336:589–592PubMedCrossRefGoogle Scholar
  41. Roscher C, Schumacher J, Baade J, Wilcke W, Gleixner G, Weisser WW, Schmid B, Schulze ED (2004) The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic Appl Ecol 5:107–121CrossRefGoogle Scholar
  42. Roscher C, Kutsch WL, Schulze E (2011) Light and nitrogen competition limit Lolium perenne in experimental grasslands of increasing plant diversity. Plant Biol 13:134–144PubMedCrossRefGoogle Scholar
  43. Rosenberg M, Adams D, Gurevitch J (2000) Metawin 2.0 user’s manual: statistical software for meta-analysis. Sinauer, SunderlandGoogle Scholar
  44. Rosenkranz S, Wilcke W, Eisenhauer N, Oelmann Y (2012) Net ammonification as influenced by plant diversity in experimental grasslands. Soil Biol Biochem 48:78–87CrossRefGoogle Scholar
  45. Rzanny M, Voigt W (2012) Complexity of multitrophic interactions in a grassland ecosystem depends on plant species diversity. J Anim Ecol 81:614–627PubMedCrossRefGoogle Scholar
  46. Scherber C, Eisenhauer N, Weisser WW, Schmid B, Voigt W, Fischer M, Schulze E, Roscher C, Weigelt A, Allan E, Beszler H, Bonkowski M, Buchmann N, Buscot F, Clement LW, Ebeling A, Engels C, Halle S, Kertscher I, Klein A, Koller R, Konig S, Kowalski E, Kummer V, Kuu A, Lange M, Lauterbach D, Middelhoff C, Migunova VD, Milcu A, Muller R, Partsch S, Petermann JS, Renker C, Rottstock T, Sabais A, Scheu S, Schumacher J, Temperton VM, Tscharntke T (2010) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468:553–556PubMedCrossRefGoogle Scholar
  47. Scherer-Lorenzen M, Palmborg C, Prinz A, Schulze ED (2003) The role of plant diversity and composition for nitrate leaching in grasslands. Ecology 84:1539–1552CrossRefGoogle Scholar
  48. Schmid B, Balvanera P, Cardinale BJ, Godbold J, Pfisterer AB, Raffaelli D, Solan M, Srivastava DS (2009) Consequences of species loss for ecosystem functioning: meta-analyses of data from biodiversity experiments. In: Naeem S, Bunker D, Hector A, Loreau M, Perrings C (eds) Biodiversity, ecosystem functioning, and human wellbeing an ecological and economic perspective. Oxford University Press, OxfordGoogle Scholar
  49. Schnitzer SA, Klironomos JN, Hille Ris Lambers J, Kinkel LL, Reich PB, Xiao K, Rillig MC, Sikes BA, Callaway RM, Mangan SA, van Nes EH, Scheffer M (2011) Soil microbes drive the classic plant diversity–productivity pattern. Ecology 92:296–303PubMedCrossRefGoogle Scholar
  50. Schulze ED, Zwölfer H (1994) Fluxes in Ecosystems. In: Schulze ED (ed) Flux control in biological systems: from enzymes to populations and ecosystems. Academic, LondonGoogle Scholar
  51. Siemann E (1998) Experimental tests of effects of plant productivity and diversity on grassland arthropod diversity. Ecology 79:2057–2070CrossRefGoogle Scholar
  52. Steinbeiss S, BeßLer H, Engels C, Temperton VM, Buchmann N, Roscher C, Kreutziger Y, Baade J, Habekost M, Gleixner G (2008) Plant diversity positively affects short-term soil carbon storage in experimental grasslands. Glob Change Biol 14:2937–2949CrossRefGoogle Scholar
  53. Temperton VM, Mwangi PN, Scherer-Lorenzen M, Schmid B, Buchmann N (2007) Positive interactions between nitrogen-fixing legumes and four different neighbouring species in a biodiversity experiment. Oecologia V151:190–205CrossRefGoogle Scholar
  54. Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720CrossRefGoogle Scholar
  55. Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845PubMedCrossRefGoogle Scholar
  56. Tilman D, Reich PB, Isbell F (2012) Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. Proc Natl Acad Sci USA 109:10394–10397PubMedCrossRefGoogle Scholar
  57. Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115CrossRefGoogle Scholar
  58. von Felten S, Hector A, Buchmann N, Niklaus PA, Schmid B, Scherer-Lorenzen M (2009) Belowground nitrogen partitioning in experimental grassland plant communities of varying species richness. Ecology 90:1389–1399CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Eric Allan
    • 1
    • 2
  • Wolfgang W. Weisser
    • 1
    • 3
  • Markus Fischer
    • 2
    • 4
  • Ernst-Detlef Schulze
    • 5
  • Alexandra Weigelt
    • 1
    • 6
  • Christiane Roscher
    • 5
    • 7
  • Jussi Baade
    • 8
  • Romain L. Barnard
    • 9
  • Holger Beßler
    • 10
  • Nina Buchmann
    • 9
  • Anne Ebeling
    • 1
  • Nico Eisenhauer
    • 1
    • 3
    • 11
    • 12
  • Christof Engels
    • 10
  • Alexander J. F. Fergus
    • 13
  • Gerd Gleixner
    • 5
  • Marlén Gubsch
    • 13
  • Stefan Halle
    • 1
  • Alexandra M. Klein
    • 14
    • 15
  • Ilona Kertscher
    • 1
  • Annely Kuu
    • 1
    • 16
  • Markus Lange
    • 1
  • Xavier Le Roux
    • 17
  • Sebastian T. Meyer
    • 1
    • 3
  • Varvara D. Migunova
    • 18
  • Alexandru Milcu
    • 19
    • 20
  • Pascal A. Niklaus
    • 13
  • Yvonne Oelmann
    • 21
  • Esther Pašalić
    • 1
  • Jana S. Petermann
    • 13
    • 22
  • Franck Poly
    • 17
  • Tanja Rottstock
    • 4
  • Alexander C. W. Sabais
    • 11
  • Christoph Scherber
    • 14
  • Michael Scherer-Lorenzen
    • 23
  • Stefan Scheu
    • 11
    • 12
  • Sibylle Steinbeiss
    • 5
    • 24
  • Guido Schwichtenberg
    • 25
  • Vicky Temperton
    • 5
    • 26
  • Teja Tscharntke
    • 14
  • Winfried Voigt
    • 1
  • Wolfgang Wilcke
    • 27
  • Christian Wirth
    • 5
    • 28
  • Bernhard Schmid
    • 13
  1. 1.Institute of EcologyFriedrich Schiller University of JenaJenaGermany
  2. 2.Institute of Plant SciencesUniversity of BerneBerneSwitzerland
  3. 3.Department für Ökologie und ÖkosystemmanagementTechnische Universität MünchenFreisingGermany
  4. 4.Department of Botany, Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
  5. 5.Max Planck Institute for BiogeochemistryJenaGermany
  6. 6.Institute for Biology IUniversity of LeipzigLeipzigGermany
  7. 7.Department of Community EcologyUFZ, Helmholtz Centre for Environmental ResearchHalleGermany
  8. 8.Institute of GeographyFriedrich Schiller University JenaJenaGermany
  9. 9.Institute of Plant SciencesETH ZurichZurichSwitzerland
  10. 10.Institute of Plant NutritionHumboldt University BerlinBerlinGermany
  11. 11.Institute of ZoologyDarmstadt University of TechnologyDarmstadtGermany
  12. 12.J.F. Blumenbach Institute of Zoology and AnthropologyUniversity of GoettingenGoettingenGermany
  13. 13.Institute of Evolutionary Biology and Environmental StudiesUniversity of ZürichZurichSwitzerland
  14. 14.Agroecology, Department of Crop SciencesUniversity of GöttingenGöttingenGermany
  15. 15.Institute of Ecology, Ecosystem FunctionsLeuphana University of LüneburgLüneburgGermany
  16. 16.Tallinn University of Technology, Tartu CollegeTartuEstonia
  17. 17.Université Lyon 1, Microbial Ecology Centre (UMR 5557 CNRS, USC 1193 INRA)Université de Lyon, INRA, CNRSVilleurbanneFrance
  18. 18.K.I. Skryabin All-Russian Institute of HelminthologyMoscowRussia
  19. 19.Imperial College LondonAscotUK
  20. 20.CNRS EcotronMontferrier-sur-LezFrance
  21. 21.Geographic InstituteJohannes Gutenberg UniversityMainzGermany
  22. 22.Institute of BiologyFreie Universität BerlinBerlinGermany
  23. 23.Faculty of BiologyUniversity of FreiburgFreiburgGermany
  24. 24.Helmholtz Centre MunichGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
  25. 25.Helmholtz Centre for Environmental Research (UFZ)LeipzigGermany
  26. 26.Phytosphere Institute ICG-3Forschungszentrum Juelich GmbHJuelichGermany
  27. 27.Soil Science Group, Geographic InstituteUniversity of BernBernSwitzerland
  28. 28.Department of Special Botany and Functional Biodiversity Research, Institute of Biology IUniversity of LeipzigLeipzigGermany

Personalised recommendations