, Volume 171, Issue 3, pp 623–637 | Cite as

An alpine treeline in a carbon dioxide-rich world: synthesis of a nine-year free-air carbon dioxide enrichment study

  • Melissa A. Dawes
  • Frank Hagedorn
  • Ira Tanya Handa
  • Kathrin Streit
  • Alf Ekblad
  • Christian Rixen
  • Christian Körner
  • Stephan Hättenschwiler
Special Topic: In Honor of Christian Körner


We evaluated the impacts of elevated CO2 in a treeline ecosystem in the Swiss Alps in a 9-year free-air CO2 enrichment (FACE) study. We present new data and synthesize plant and soil results from the entire experimental period. Light-saturated photosynthesis (A max) of ca. 35-year-old Larix decidua and Pinus uncinata was stimulated by elevated CO2 throughout the experiment. Slight down-regulation of photosynthesis in Pinus was consistent with starch accumulation in needle tissue. Above-ground growth responses differed between tree species, with a 33 % mean annual stimulation in Larix but no response in Pinus. Species-specific CO2 responses also occurred for abundant dwarf shrub species in the understorey, where Vaccinium myrtillus showed a sustained shoot growth enhancement (+11 %) that was not apparent for Vaccinium gaultherioides or Empetrum hermaphroditum. Below ground, CO2 enrichment did not stimulate fine root or mycorrhizal mycelium growth, but increased CO2 effluxes from the soil (+24 %) indicated that enhanced C assimilation was partially offset by greater respiratory losses. The dissolved organic C (DOC) concentration in soil solutions was consistently higher under elevated CO2 (+14 %), suggesting accelerated soil organic matter turnover. CO2 enrichment hardly affected the C–N balance in plants and soil, with unaltered soil total or mineral N concentrations and little impact on plant leaf N concentration or the stable N isotope ratio. Sustained differences in plant species growth responses suggest future shifts in species composition with atmospheric change. Consistently increased C fixation, soil respiration and DOC production over 9 years of CO2 enrichment provide clear evidence for accelerated C cycling with no apparent consequences on the N cycle in this treeline ecosystem.


Carbon cycling Dwarf shrub Global change Nitrogen Treeline conifer 



We thank many colleagues at the SLF, WSL, Paul-Scherrer Institute and University of Basel for their assistance with field and lab measurements and technical support. We are especially grateful to E. Amstutz, L. Egli, G. Grun, A. Studer, S. Wipf and P. Bebi for helping to ensure successful operation of the FACE system. Major funding sources included: the Swiss National Science Foundation 2001–2005 (grant 31-061428.00 to S. H.) and 2007–2009 (grant 315200-116861 to C. R.); an ANR-biodiversité grant to S. H. 2006–2008; and the Velux foundation 2007–2009 (grant 371 to F. H.). Additional financial support was provided by the CCES-ETH project MOUNTLAND, Swiss State Secretariat for Education and Research (COST Action 639, projects C07.0032 and C07.0033), WSL, University of Basel Botanical Institute, Swiss Federal Office for the Environment and the Fonds québecois de recherche sur la nature et les technologies (scholarship to I. T. H.).

Supplementary material

442_2012_2576_MOESM1_ESM.pdf (150 kb)
Supplementary material 1 (PDF 150 kb)


  1. Andresen LC, Michelsen A, Jonasson S, Schmidt IK, Mikkelsen TN, Ambus P, Beier C (2010) Plant nutrient mobilization in temperate heathland responds to elevated CO2, temperature and drought. Plant Soil 328:381–396CrossRefGoogle Scholar
  2. Asshoff R, Hättenschwiler S (2005) Growth and reproduction of the alpine grasshopper Miramella alpina feeding on CO2-enriched dwarf shrubs at treeline. Oecologia 142:191–201PubMedCrossRefGoogle Scholar
  3. Bader MKF, Hiltbrunner E, Körner C (2009) Fine root responses of mature deciduous forest trees to free air carbon dioxide enrichment (FACE). Funct Ecol 23:913–921CrossRefGoogle Scholar
  4. Bader MKF, Siegwolf R, Körner C (2010) Sustained enhancement of photosynthesis in mature deciduous forest trees after 8 years of free air CO2 enrichment. Planta 232:1115–1125PubMedCrossRefGoogle Scholar
  5. Bednorz F, Reichstein M, Broll G, Holtmeier FK, Urfer W (2000) Humus forms in the forest-alpine tundra ecotone at Stillberg (Dischmatal, Switzerland): spatial heterogeneity and classification. Arct Antarct Alp Res 32:21–29CrossRefGoogle Scholar
  6. Brown A, Day F, Stover D (2009) Fine root biomass estimates from minirhizotron imagery in a shrub ecosystem exposed to elevated CO2. Plant Soil 317:145–153CrossRefGoogle Scholar
  7. Chapin FS, McFarland J, McGuire AD, Euskirchen ES, Ruess RW, Kielland K (2009) The changing global carbon cycle: linking plant–soil carbon dynamics to global consequences. J Ecol 97:840–850CrossRefGoogle Scholar
  8. Crous KY, Walters MB, Ellsworth DS (2008) Elevated CO2 concentration affects leaf photosynthesis and nitrogen relationships in Pinus taeda over nine years in FACE. Tree Physiol 28:607–614PubMedCrossRefGoogle Scholar
  9. Dawes MA, Hagedorn F, Zumbrunn T, Handa IT, Hättenschwiler S, Wipf S, Rixen C (2011a) Growth and community responses of alpine dwarf shrubs to in situ CO2 enrichment and soil warming. New Phytol 191:806–818PubMedCrossRefGoogle Scholar
  10. Dawes MA, Hättenschwiler S, Bebi P, Hagedorn F, Handa IT, Körner C, Rixen C (2011b) Species-specific tree growth responses to nine years of CO2 enrichment at the alpine treeline. J Ecol 99:383–394Google Scholar
  11. Drake JE, Gallet-Budynek A, Hofmockel KS, Bernhardt ES, Billings SA, Jackson RB, Johnsen KS, Lichter J, McCarthy HR, McCormack ML, Moore DJP, Oren R, Palmroth S, Phillips RP, Pippen JS, Pritchard SG, Treseder KK, Schlesinger WH, DeLucia EH, Finzi AC (2011) Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecol Lett 14:349–357PubMedCrossRefGoogle Scholar
  12. Finzi AC, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B, Holmes WE, Hoosbeek MR, Iversen CM, Jackson RB, Kubiske ME, Ledford J, Liberloo M, Oren R, Polle A, Pritchard SG, Zak DR, Schlesinger WH, Ceulemans R (2007) Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proc Natl Acad Sci USA 104:14014–14019PubMedCrossRefGoogle Scholar
  13. Godbold D, Hoosbeek M, Lukac M, Cotrufo M, Janssens I, Ceulemans R, Polle A, Velthorst E, Scarascia-Mugnozza G, De Angelis P, Miglietta F, Peressotti A (2006) Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 281:15–24CrossRefGoogle Scholar
  14. Gwynn-Jones D, Lee JA, Callaghan TV (1997) Effects of enhanced UV-B radiation and elevated carbon dioxide concentrations on a sub-arctic forest heath ecosystem. Plant Ecol 128:242–249CrossRefGoogle Scholar
  15. Hagedorn F, van Hees PAW, Handa IT, Hättenschwiler S (2008) Elevated atmospheric CO2 fuels leaching of old dissolved organic matter at the alpine treeline. Global Biogeochem Cycles 22:GB2004Google Scholar
  16. Hagedorn F, Martin MA, Rixen C, Rusch S, Zürcher A, Siegwolf RTW, Wipf S, Escape C, Roy J, Hättenschwiler S (2010) Short-term responses of ecosystem carbon fluxes to experimental soil warming at the Swiss alpine treeline. Biogeochemistry 97:7–19CrossRefGoogle Scholar
  17. Handa IT, Körner C, Hättenschwiler S (2005) A test of the tree-line carbon limitation hypothesis by in situ CO2 enrichment and defoliation. Ecology 86:1288–1300CrossRefGoogle Scholar
  18. Handa IT, Körner C, Hättenschwiler S (2006) Conifer stem growth at the altitudinal treeline in response to four years of CO2 enrichment. Glob Change Biol 12:2417–2430CrossRefGoogle Scholar
  19. Handa IT, Hagedorn F, Hättenschwiler S (2008) No stimulation in root production in response to four years of in situ CO2 enrichment at the Swiss treeline. Funct Ecol 22:348–358CrossRefGoogle Scholar
  20. Hättenschwiler S, Zumbrunn T (2006) Hemiparasite abundance in an alpine treeline ecotone increases in response to atmospheric CO2 enrichment. Oecologia 147:47–52PubMedCrossRefGoogle Scholar
  21. Hättenschwiler S, Handa IT, Egli L, Asshoff R, Ammann W, Körner C (2002) Atmospheric CO2 enrichment of alpine treeline conifers. New Phytol 156:363–375CrossRefGoogle Scholar
  22. Hoch G, Körner C (2003) The carbon charging of pines at the climatic treeline: a global comparison. Oecologia 135:10–21PubMedGoogle Scholar
  23. Högberg P, Nordgren A, Buchmann N, Taylor AF, Ekblad A, Högberg MN, Nyberg G, Ottosson-Lofvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792PubMedCrossRefGoogle Scholar
  24. Holmgren M, Stapp P, Dickman CR, Gracia C, Graham S, Gutierrez JR, Hice C, Jaksic F, Kelt DA, Letnic M, Lima M, Lopez BC, Meserve PL, Milstead WB, Polis GA, Previtali MA, Michael R, Sabate S, Squeo FA (2006) Extreme climatic events shape arid and semiarid ecosystems. Front Ecol Environ 4:87–95CrossRefGoogle Scholar
  25. Inauen N, Körner C, Hiltbrunner E (2012) No growth stimulation by CO2 enrichment in alpine glacier forefield plants. Glob Change Biol 18:985–999CrossRefGoogle Scholar
  26. Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, Scherer-Lorenzen M, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Zavaleta ES, Loreau M (2011) High plant diversity is needed to maintain ecosystem services. Nature 477:199–202PubMedCrossRefGoogle Scholar
  27. Jackson RB, Cook CW, Pippen JS, Palmer SM (2009) Increased belowground biomass and soil CO2 fluxes after a decade of carbon dioxide enrichment in a warm-temperate forest. Ecology 90:3352–3366PubMedCrossRefGoogle Scholar
  28. Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5:365–374CrossRefGoogle Scholar
  29. Kasurinen A, Keinänen MM, Kaipainen S, Nilsson L-O, Vapaavuori E, Kontro MH, Holopainen T (2005) Below-ground responses of silver birch trees exposed to elevated CO2 and O3 levels during three growing seasons. Glob Change Biol 11:1167–1179CrossRefGoogle Scholar
  30. King JS, Hanson PJ, Bernhardt E, DeAngelis P, Norby RJ, Pregitzer KS (2004) A multiyear synthesis of soil respiration responses to elevated atmospheric CO2 from four forest FACE experiments. Glob Change Biol 10:1027–1042CrossRefGoogle Scholar
  31. Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, BerlinCrossRefGoogle Scholar
  32. Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172:393–411PubMedCrossRefGoogle Scholar
  33. Körner C (2012) Alpine treelines. Springer, BerlinCrossRefGoogle Scholar
  34. Körner C, Diemer M, Schappi B, Niklaus PA, Arnone JA (1997) The responses of alpine grassland to four seasons of CO2 enrichment: a synthesis. Acta Oecol Int J Ecol 18:165–175CrossRefGoogle Scholar
  35. Kostiainen K, Kaakinen S, Saranpaa P, Sigurdsson BD, Linder S, Vapaavuori E (2004) Effect of elevated [CO2] on stem wood properties of mature Norway spruce grown at different soil nutrient availability. Glob Change Biol 10:1526–1538CrossRefGoogle Scholar
  36. Langley JA, Megonigal JP (2011) Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift. Nature 466:96–99CrossRefGoogle Scholar
  37. Langley JA, McKinley DC, Wolf AA, Hungate BA, Drake BG, Megonigal JP (2009) Priming depletes soil carbon and releases nitrogen in a scrub-oak ecosystem exposed to elevated CO2. Soil Biol Biochem 41:54–60CrossRefGoogle Scholar
  38. Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876PubMedCrossRefGoogle Scholar
  39. Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants face the future. Annu Rev Plant Biol 55:591–628PubMedCrossRefGoogle Scholar
  40. Luo YQ, Su B, Currie WS, Dukes JS, Finzi AC, Hartwig U, Hungate BA, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–739CrossRefGoogle Scholar
  41. Martin MA, Gavazov K, Körner C, Hättenschwiler S, Rixen C (2010) Reduced early growing season freezing resistance in alpine treeline plants under elevated atmospheric CO2. Glob Change Biol 16:1057–1070CrossRefGoogle Scholar
  42. Norby RJ, Zak DR (2011) Ecological lessons from free air CO2 enrichment (FACE) experiments. Annu Rev Ecol Evol Syst 42:181–203CrossRefGoogle Scholar
  43. Norby RJ, Ledford J, Reilly C, Miller N, O’Neill E (2004) Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proc Natl Acad Sci USA 101:9689–9693PubMedCrossRefGoogle Scholar
  44. Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci USA 107:19368–19373PubMedCrossRefGoogle Scholar
  45. Oechel WC, Cowles S, Grulke N, Hastings SJ, Lawrence B, Prudhomme T, Riechers G, Strain B, Tissue D, Vourlitis G (1994) Transient nature of CO2 fertilization in arctic tundra. Nature 371:500–503CrossRefGoogle Scholar
  46. Parrent JL, Vilgalys R (2007) Biomass and compositional responses of ectomycorrhizal fungal hyphae to elevated CO2 and nitrogen fertilization. New Phytol 176:164–174PubMedCrossRefGoogle Scholar
  47. Phillips RP, Finzi AC, Bernhardt ES (2011) Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol Lett 14:187–194PubMedCrossRefGoogle Scholar
  48. Pinheiro J, Bates D, DebRoy S, Sarkar D, The R Core Team (2008) nlme: linear and nonlinear mixed effects models. R package version 3.1-89Google Scholar
  49. Pollierer MM, Langel R, Körner C, Maraun M, Scheu S (2007) The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol Lett 10:729–736PubMedCrossRefGoogle Scholar
  50. Pritchard SG, Strand AE, McCormack ML, Davis MA, Finzi AC, Jackson RB, Matamala R, Rogers HH, Oren R (2008) Fine root dynamics in a loblolly pine forest are influenced by free air CO2 enrichment: a six-year-minirhizotron study. Glob Change Biol 14:588–602CrossRefGoogle Scholar
  51. Rixen C, Dawes MA, Wipf S, Hagedorn F (2012) Evidence of enhanced freezing damage in treeline plants during six years of CO2 enrichment and soil warming. Oikos 121:1532–1543Google Scholar
  52. Rossi S, Anfodillo T, Menardi R (2006) Trephor: A new tool for sampling microcores from tree stems. IAWA J 27:89–97Google Scholar
  53. Schäppi B, Körner C (1996) Growth responses of an alpine grassland to elevated CO2. Oecologia 105:43–52CrossRefGoogle Scholar
  54. Schleppi P, Bucher-Wallin I, Hagedorn F, Körner C (2012) Increased nitrate availability in the soil of a mixed mature temperate forest subjected to elevated CO2 concentration (canopy FACE). Glob Change Biol 18:757–768CrossRefGoogle Scholar
  55. Schmitt M, Thöni M, Waldner P, Thimonier A (2005) Total deposition of nitrogen on Swiss long-term forest ecosystem research (LWF) plots: comparison of the throughfall and the interferential method. Atmos Environ 39:1079–1091CrossRefGoogle Scholar
  56. Seiler TJ, Rasse DP, Li J, Dijkstra P, Anderson HP, Johnson DP, Powell TL, Hungate BA, Hinkle CR, Drake BG (2009) Disturbance, rainfall and contrasting species responses mediated aboveground biomass response to 11 years of CO2 enrichment in a Florida scrub-oak ecosystem. Glob Change Biol 15:356–367CrossRefGoogle Scholar
  57. R Development Core Team (2008–2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  58. Tinner W, Kaltenrieder P (2005) Rapid responses of high-mountain vegetation to early Holocene environmental changes in the Swiss Alps. J Ecol 93:936–947CrossRefGoogle Scholar
  59. Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355CrossRefGoogle Scholar
  60. Wallander H, Nilsson LO, Hagerberg D, Bååth E (2001) Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol 151:753–760CrossRefGoogle Scholar
  61. Zak DR, Pregitzer KS, Kubiske ME, Burton AJ (2011) Forest productivity under elevated CO2 and O3: positive feedbacks to soil N cycling sustain decade-long net primary productivity enhancement by CO2. Ecol Lett 14:1220–1226PubMedCrossRefGoogle Scholar
  62. Zavaleta ES, Shaw MR, Chiariello NR, Mooney HA, Field CB (2003) Additive effects of simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity. Proc Natl Acad Sci USA 100:7650–7654PubMedCrossRefGoogle Scholar
  63. Zvereva EL, Kozlov MV (2006) Consequences of simultaneous elevation of carbon dioxide and temperature for plant–herbivore interactions: a meta-analysis. Glob Change Biol 12:27–41CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Melissa A. Dawes
    • 1
  • Frank Hagedorn
    • 2
  • Ira Tanya Handa
    • 3
  • Kathrin Streit
    • 4
  • Alf Ekblad
    • 5
  • Christian Rixen
    • 1
  • Christian Körner
    • 6
  • Stephan Hättenschwiler
    • 7
  1. 1.Mountain EcosystemsWSL Institute for Snow and Avalanche Research-SLFDavos DorfSwitzerland
  2. 2.Forest Soils and BiogeochemistrySwiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
  3. 3.Département des sciences biologiquesUniversité du Québec à Montréal (UQÀM)MontrealCanada
  4. 4.Paul Scherrer Institute (PSI)VilligenSwitzerland
  5. 5.School of Science and TechnologyÖrebro UniversityÖrebroSweden
  6. 6.Institute of BotanyUniversity of BaselBaselSwitzerland
  7. 7.Centre d’Ecologie Fonctionnelle et Evolutive (CEFE)CNRSMontpellier Cedex 5France

Personalised recommendations