, Volume 172, Issue 2, pp 399–408 | Cite as

Optimal mate choice patterns in pelagic copepods

Behavioral ecology - Original research


The importance of sexual selection for the evolution, dynamics and adaptation of organisms is well known for many species. However, the topic is rarely studied in marine plankton, the basis of the marine food web. Copepods show behaviors that suggest the existence of sexually selected traits, and recent laboratory experiments identified some selected morphological traits. Here, we use a ‘life history-based’ model of sex roles to determine the optimal choosiness behavior of male and female copepods for important copepod traits. Copepod females are predicted to be choosy at population densities typically occurring during the main breeding season, whereas males are not. The main drivers of this pattern are population density and the difference in non-receptive periods between males and females. This suggests that male reproductive traits have evolved mainly due to mate competition. The model can easily be parameterized for other planktonic organisms, and be used to plan experiments about sexual selection.


Copepods Pelagic Sexual selection Mate choice Plankton 

Supplementary material

442_2012_2516_MOESM1_ESM.pdf (174 kb)
Supplementary material 1 (PDF 174 kb)
442_2012_2516_MOESM2_ESM.f90 (6 kb)
Supplementary material 2 (F90 6 kb)
442_2012_2516_MOESM3_ESM.f90 (6 kb)
Supplementary material 3 (F90 6 kb)
442_2012_2516_MOESM4_ESM.f90 (9 kb)
Supplementary material 4 (F90 8 kb)
442_2012_2516_MOESM5_ESM.f90 (6 kb)
Supplementary material 5 (F90 6 kb)
442_2012_2516_MOESM6_ESM.f90 (9 kb)
Supplementary material 6 (F90 8 kb)


  1. Ali AK, Primicerio R, Folstad I, Liljedal S, Berge J (2009) Morphological correlates of mating frequency and clutch size in wild caught female Eudiaptomus graciloides (Copepoda: calanoida). J Plankton Res 31:389–397CrossRefGoogle Scholar
  2. Anstensrud M (1990) Mating strategies of two parasitic copepods [(Lernaeocera branchialis (L.)(Pennellidae) and Lepeophtheirus pectoralis (Müller)(Caligidae)] on flounder: polygamy, sex- specific age at maturity and sex ratio. J Exp Mar Biol Ecol 136:141–158CrossRefGoogle Scholar
  3. Arnqvist G, Nilsson T (2000) The evolution of polyandry: multiple mating and female fitness in insects. Anim Behav 60:145–164PubMedCrossRefGoogle Scholar
  4. Bagøien E, Kiørboe T (2004) Blind dating - mate finding in planktonic copepods. III. Hydrome- chanical communication in Acartia tonsa. Mar Ecol Prog Ser 300:129–133CrossRefGoogle Scholar
  5. Blades P (1977) Mating behavior of Centropages typicus (Copepoda: calanoida). Mar Biol 40:57–64CrossRefGoogle Scholar
  6. Burton RS (1985) Mating system of the intertidal copepod Tigriopus californicus. Mar Biol 86:247–252CrossRefGoogle Scholar
  7. Buskey E, Lenz P, Hartline D (2002) Escape behavior of planktonic copepods in response to hydrodynamic disturbances: high speed video analysis. Mar Ecol Prog Ser 235:135–146CrossRefGoogle Scholar
  8. Ceballos S, Kiørboe T (2010) First evidences of sexual selection by mate choice in marine zooplankton. Oecologia 164:627–635Google Scholar
  9. Ceballos S, Kiørboe T (2011) Senescence and sexual selection in a pelagic copepod. PLoS ONE 6:e18870PubMedCrossRefGoogle Scholar
  10. ChapmanT Liddle L, Kalb J, Wolfner M, Partridge L (1995) Cost of mating in Drosophila melanogaster females is mediated by male accessory-gland products. Nature 373:241–244CrossRefGoogle Scholar
  11. Corkett CJ, McLaren IA (1969) Egg production and oil storage by the copepod Pseudocalanus in the laboratory. J Exp Mar Biol Ecol 3:90–105CrossRefGoogle Scholar
  12. Corkett CJ, McLaren IA (1978) The biology of Pseudocalanus. Adv Mar Biol 15:1–231CrossRefGoogle Scholar
  13. Cornwallis CK, Uller T (2010) Towlatter faces a significantly elevated ards an evolutionary ecology of sexual traits. Trends Ecol Evol 25:145–152PubMedCrossRefGoogle Scholar
  14. Digby PSB (1950) The biology of the small planktonic copepods of Plymouth. J Mar Biol Assoc UK 29:393–438CrossRefGoogle Scholar
  15. Doall M, Colin S, Strickler J, Yen J (1998) Locating a mate in 3D: the case of Temora longicornis. Philos Trans R Soc Lond B 353:681–689CrossRefGoogle Scholar
  16. Fleminger A (1985) Dimorphism and possible sex change in copepods of the family Calanidae. Mar Biol 88:273–294CrossRefGoogle Scholar
  17. Fowler K, Partridge L (1989) A cost of mating in female fruitflies. Nature 338:760–761CrossRefGoogle Scholar
  18. Gusmao LFM, McKinnon AD (2009) Sex ratios, intersexuality and sex change in copepods. J Plankton Res 31:1101–1117CrossRefGoogle Scholar
  19. Hirst A, Kiørboe T (2002) Mortality of marine planktonic copepods: global rates and patterns. Mar Ecol Prog Ser 230:195–209CrossRefGoogle Scholar
  20. Hirst AG, Sheader M, Williams JA (1999) Annual pattern of calanoid copepod abundance, prosome length and minor role in pelagic carbon flux in the Solent, UK. Mar Ecol Prog Ser 177:133–146Google Scholar
  21. Hirst A, Bonnet D, Conway D, Kiørboe T (2010) Does predation control adult sex ratios and longevities in marine pelagic copepods? Limnol Oceanogr 55:2193–2206CrossRefGoogle Scholar
  22. Humes AG (1994) How many copepods? Hydrobiologia 292–293:1–7CrossRefGoogle Scholar
  23. Hylstofte Sichlau M, Kiørboe T (2011) Age- and size-dependent mating performance and fertility in a pelagic copepod, Temora longicornis. Mar Ecol Prog Ser 442:123–132CrossRefGoogle Scholar
  24. Ianora A, Miralto A, Buttino I, Romano G, Poulet SA (1999) First evidence of some dinoflagellates reducing male copepod fertilization capacity. Limnol Oceanogr 44:147–153CrossRefGoogle Scholar
  25. Irigoien X, Obermüller B, Head RN, Harris RP, Rey C, Hansen BW, Hygum BH, Heath MR, Durbinal EG (2000) The effect of food on the determination of sex ratio in Calanus spp.: evidence from experimental studies and field data. ICES J Mar Sci 57:1752–1763CrossRefGoogle Scholar
  26. Jennions MD, Petrie M (1997) Variation in mate choice and mating preferences: a review of causes and consequences. Biol Rev 72:283–327PubMedCrossRefGoogle Scholar
  27. Jennions MD, Petrie M (2000) Why do females mate multiply? A review of the genetic benefits. Biol Rev Cambridge Philos Soc 75:21–64PubMedCrossRefGoogle Scholar
  28. Katona SK (1973) Evidence for sex pheromones in planktonic copepods. Limnol Oceanogr 18:574–583CrossRefGoogle Scholar
  29. Kiørboe T (2007) Mate finding, mating, and population dynamics in a planktonic copepod Oithona davisae: there are too few males. Limnol Oceanogr 52:1511–1522CrossRefGoogle Scholar
  30. Kiørboe T (2008) Optimal swimming strategies in mate-searching pelagic copepods. Oecologia 155:179–192PubMedCrossRefGoogle Scholar
  31. Kiørboe T, Bagoien E (2005) Motility patterns and mate encounter rates in planktonic copepods. Limnol Oceanogr 50:1999–2007CrossRefGoogle Scholar
  32. Kiørboe T, Visser AW (1999) Predator and prey perception in copepods due to hydromechanical signals. Mar Ecol Prog Ser 179:81–95CrossRefGoogle Scholar
  33. Kiørboe T, Bagoien E, Thygesen U (2004) Blind dating—mate finding in planktonic copepods. II. The pheromone cloud of Pseudocalanus elongatus. Mar Ecol Prog Ser 300:117–128CrossRefGoogle Scholar
  34. Kokko H, Monaghan P (2001) Predicting the direction of sexual selection. Ecol Lett 4:159–165CrossRefGoogle Scholar
  35. Kokko H, Rankin D (2006) Lonely hearts or sex in the city? Density-dependent effects in mating systems. Philos Trans R Soc Lond B 361:319–334CrossRefGoogle Scholar
  36. Korpelainen H (1990) Sex ratios and conditions required for environmental sex determination in animals. Biol Rev Cambridge Philos Soc 65:147–184PubMedCrossRefGoogle Scholar
  37. Landry MR (1978) Population dynamics and production of a planktonic marine copepod, Acartia clausii, in a small temperate lagoon on San Juan Island, Washington. Int Rev Ges Hydrobiol 63:77–119CrossRefGoogle Scholar
  38. Lee WY, McAlice B (1979) Seasonal succession and breeding cycles of three species of Acartia (Copepoda: calanoida) in a Maine estuary. Estuar Coast 2:228–235CrossRefGoogle Scholar
  39. Maly EJ (1973) Density, size, and clutch of two high altitude diaptomid copepods. Limnol Oceanogr 18:840–848CrossRefGoogle Scholar
  40. Mauchline J (1998) The biology of calanoid copepods. Academic, LondonGoogle Scholar
  41. Möllmann C, Köster F (2002) Population dynamics of calanoid copepods and the implications of their predation by clupeid fish in the Central Baltic Sea. J Plankton Res 24:959–977CrossRefGoogle Scholar
  42. Renz J, Mengedoht D, Hirche H (2008) Reproduction, growth and secondary production of Pseudocalanus elongatus Boeck (Copepoda, Calanoida) in the southern North Sea. J Plankton Res 30:511–528CrossRefGoogle Scholar
  43. Rodriguez J, Mullin MM (1986) Relation between biomass and body weight of plankton in a steady state oceanic ecosystem. Limnol Oceanogr 31:361–370CrossRefGoogle Scholar
  44. Schluter D (2001) Ecology and the origin of species. Trends Ecol Evol 16:372–380PubMedCrossRefGoogle Scholar
  45. Sheldon RW, Prakash A, Sutcliffe WH Jr (1972) The size distribution of particles in the ocean. Limnol Oceanogr 17:327–340CrossRefGoogle Scholar
  46. Shimanaga M, Shirayama Y (2005) Precopulatory mate guarding of interstitial Phyllopodopsyllus sp. (Copepoda: harpacticoida) in Otsuchi Bay, Northeastern Japan. Benthos Res 60:39–40Google Scholar
  47. Shuster SM, Wade MJ (2003) Mating systems and strategies. Princeton University Press, PrincetonGoogle Scholar
  48. Smyly WJP (1968) Number of eggs and body size in the freshwater copepod Diaptomus gracilis Sars in the English Lake District. Oikos 19:323–338CrossRefGoogle Scholar
  49. Titelman J, Varpe Ø, Eliassen S, Fiksen Ø (2006) Copepod mating: chance or choice? J Plankton Res 29:1023–1030CrossRefGoogle Scholar
  50. Tsuda A, Miller C (1998) Mate-finding behaviour in Calanus marshallae Frost. Philos Trans R Soc Lond B 353:713–720CrossRefGoogle Scholar
  51. Uchima M (1985) Copulation in the marine copepod Oithona davisae. I. Mate discrimination. Bull Plankton Soc Jpn 32:23–30Google Scholar
  52. Uye S, Sano K (1995) Seasonal reproductive biology of the small cyclopoid copepod Oithona davisae in a temperate eutrophic inlet. Mar Ecol Prog Ser 118:121–128CrossRefGoogle Scholar
  53. Visser AW, Mariani P, Pigolotti S (2009) Swimming in turbulence: zooplankton fitness in terms of foraging efficiency and predation risk. J Plankton Res 31:121–133CrossRefGoogle Scholar
  54. Wilson D, Parrish K (1971) Remating in a planktonic marine calanoid copepod. Mar Biol 9:202–204CrossRefGoogle Scholar
  55. Yen J, Weissburg M, Doall M (1998) The fluid physics of signal perception by mate-tracking copepods. Philos Trans R Soc Lond B 353:787–804CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jan Heuschele
    • 1
    • 2
  • Sigrunn Eliassen
    • 2
  • Thomas Kiørboe
    • 1
  1. 1.Centre for Ocean Life, National Institute for Aquatic ResourcesTechnical University of DenmarkCharlottenlundDenmark
  2. 2.Department of BiologyUniversity of BergenBergenNorway

Personalised recommendations