Advertisement

Oecologia

, Volume 171, Issue 2, pp 379–389 | Cite as

Maternal effects in the highly communal sociable weaver may exacerbate brood reduction and prepare offspring for a competitive social environment

  • René E. van Dijk
  • Corine M. Eising
  • Richard M. Merrill
  • Filiz Karadas
  • Ben Hatchwell
  • Claire N. Spottiswoode
Behavioral ecology - Original research

Abstract

Maternal effects can influence offspring phenotype with short- and long-term consequences. Yet, how the social environment may influence egg composition is not well understood. Here, we investigate how laying order and social environment predict maternal effects in the sociable weaver, Philetairus socius, a species that lives in massive communal nests which may be occupied by only a few to 100+ individuals in a single nest. This range of social environments is associated with variation in a number of phenotypic and life-history traits. We investigate whether maternal effects are adjusted accordingly. We found no evidence for the prediction that females might benefit from modifying brood hierarchies through an increased deposition of androgens with laying order. Instead, females appear to exacerbate brood reduction by decreasing the costly production of yolk mass and antioxidants with laying order. Additionally, we found that this effect did not depend on colony size. Finally, in accordance with an expected increased intensity of environmental stress with increasing colony size, we found that yolk androgen concentration increased with colony size. This result suggests that females may enhance the competitive ability of offspring raised in larger colonies, possibly preparing the offspring for a competitive social environment.

Keywords

Breeding density Competition Egg composition Hatching asynchrony Maternal investment 

Notes

Acknowledgments

We are grateful to De Beers Consolidated Mines Ltd and Morné du Plessis for the opportunity to work at Benfontein Game Farm, to the Northern Cape Province’s Department of Tourism, and Environment and Conservation (especially Mark Anderson) for research permits, and to Eric Herrmann for his assistance in the field. The androgen assays were carried out at the University of Groningen by kind permission of Ton Groothuis. Nick Davies, Rebecca Kilner, Jane Reid, Indrikis Krams and two anonymous referees provided helpful comments on earlier drafts of the manuscript. R.E.v.D. was supported by a grant of the Natural Environment Research Council (NERC) to B.J.H., and C.N.S. by St John’s College, Cambridge (UK) and the University of Cape Town (South Africa). Our research complied with the current laws of the countries in which it was performed.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adkins-Regan E, Ottinger MA, Park J (1995) Maternal transfer of estradiol to egg yolks alters sexual differentiation of avian offspring. J Exp Zool 271:466–470. doi: 10.1002/jez.1402710608 CrossRefGoogle Scholar
  2. Alexander RD (1974) The evolution of social behaviour. Annu Rev Ecol Syst 5:325–383CrossRefGoogle Scholar
  3. Alonso-Alvarez C, Bertrand S, Faivre B, Chastel O, Sorci G (2007) Testosterone and oxidative stress: the oxidation handicap hypothesis. Proc R Soc Lond B 274:819–825. doi: 10.1098/rspb.2006.3764 CrossRefGoogle Scholar
  4. Alonzo SH, Sheldon BC (2010) Population density, social behaviour and sex allocation. In: Székely T, Moore AJ, Komdeur J (eds) Social behaviour: genes, ecology and evolution. Cambridge University Press, Cambridge, pp 474–488CrossRefGoogle Scholar
  5. Biard C, Gil D, Karadaş F, Saino N, Spottiswoode CN, Surai PF, Møller AP (2009) Maternal effects mediated by antioxidants and the evolution of carotenoid-based signals in birds. Am Nat 174:696–708. doi: 10.1086/606021 PubMedCrossRefGoogle Scholar
  6. Blount JD, Houston DC, Møller AP (2000) Why egg yolk is yellow. Trends Ecol Evol 15:47–49. doi: 10.1016/S0169-5347(99)01774-7 PubMedCrossRefGoogle Scholar
  7. Blount JD, Houston DC, Surai PR, Møller AP (2004) Egg-laying capacity is limited by carotenoid pigment availability in wild gulls Larus fuscus. Proc R Soc Lond B 271:S79–S81. doi: 10.1098/rsbl.2003.0104 CrossRefGoogle Scholar
  8. Brown CR, Brown MB (2004) Empirical measurement of parasite transmission between groups in a colonial bird. Ecology 85:1619–1626. doi: 10.1890/03-0206 CrossRefGoogle Scholar
  9. Brown CR, Covas R, Anderson MD, Brown MB (2003) Multistate estimates of survival and movement in relation to colony size in the sociable weaver. Behav Ecol 14:463–471. doi: 10.1093/beheco/arg034 CrossRefGoogle Scholar
  10. Buttemer WA, Abele D, Costantini D (2010) The ecology of antioxidants and oxidative stress in animals—from bivalves to birds: oxidative stress and longevity. Funct Ecol 24:971–983. doi: 10.1111/j.1365-2435.2010.01740.x CrossRefGoogle Scholar
  11. Covas R (2002) Life-history evolution and cooperative breeding in the sociable weaver. PhD dissertation, University of Cape Town, Cape TownGoogle Scholar
  12. Covas R, Brown CR, Anderson MD, Bomberger Brown M (2004) Juvenile and adult survival in the sociable weaver (Philetairus socius), a southern-temperate colonial cooperative breeder in Africa. Auk 121:1199–1207Google Scholar
  13. Eising CM, Eikenaar C, Schwabl H, Groothuis TGG (2001) Maternal androgens in black-headed gull (Larus ridibundus) eggs: consequences for chick development. Proc R Soc Lond B 268:839–846. doi: 10.1098/rspb.2001.1594 CrossRefGoogle Scholar
  14. Eising CM, Müller W, Dijkstra C, Groothuis TGG (2003) Maternal androgens in egg yolks: relation with sex, incubation time and embryonic growth. Gen Comp Endocrinol 132:241–247. doi: 10.1016/S0016-6480(03)00090-X PubMedCrossRefGoogle Scholar
  15. Eising CM, Pavlova D, Groothuis TGG, Eens M, Pinxten R (2008) Maternal yolk androgens in European starlings: affected by social environment or individual traits of the mother? Behaviour 145:51–72. doi: 10.1163/156853908782687232 CrossRefGoogle Scholar
  16. Elf PK, Fivizzani AJ (2002) Changes in sex steroid levels in yolks of the leghorn chicken, Gallus domesticus, during embryonic development. J Exp Zool 293:594–600. doi: 10.1002/jez.10169 PubMedCrossRefGoogle Scholar
  17. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247. doi: 10.1038/35041687 PubMedCrossRefGoogle Scholar
  18. Folstad I, Karter AJ (1992) Parasites, bright males, and the immunocompetence handicap. Am Nat 139:603–622. doi: 10.1086/285346 CrossRefGoogle Scholar
  19. Gil D (2003) Golden eggs: maternal manipulation of offspring phenotype by egg androgen in birds. Ardeola 50:281–294Google Scholar
  20. Gil D, Biard C, Lacroix A, Spottiswoode CN, Saino N, Puerta M, Møller AP (2007) Evolution of yolk androgens in birds: development, coloniality, and sexual dichromatism. Am Nat 169:802–819. doi: 10.1086/516652 PubMedCrossRefGoogle Scholar
  21. Groothuis TGG, Schwabl H (2008) Hormone-mediated maternal effects in birds: mechanisms matter but what do we know of them? Phil Trans R Soc Lond B 363:1647–1661. doi: 10.1098/rstb.2007.0007 CrossRefGoogle Scholar
  22. Hall ME, Blount JD, Forbes S, Royle NJ (2010) Does oxidative stress mediate the trade-off between growth and self-maintenance in structured families? Funct Ecol 24:365–373. doi: 10.1111/j.1365-2435.2009.01635.x CrossRefGoogle Scholar
  23. Hargitai R, Arnold KE, Herényi M, Prechl J, Török J (2009) Egg composition in relation to social environment and maternal physiological condition in the collared flycatcher. Behav Ecol Sociobiol 63:869–882. doi: 10.1007/s00265-009-0727-4 CrossRefGoogle Scholar
  24. Hau M, Ricklefs RE, Wikelski M, Lee KA, Brawn JD (2010) Corticosterone, testosterone and life-history strategies of birds. Proc R Soc Lond B 277:3203–3212. doi: 10.1098/rspb.2010.0673 CrossRefGoogle Scholar
  25. Hegyi G, Herényi M, Szöllősi E, Rosivall B, Török J, Groothuis TGG (2011) Yolk androstenedione, but not testosterone, predicts offspring fate and reflects parental quality. Behav Ecol 22:29–38. doi: 10.1093/beheco/arq165 CrossRefGoogle Scholar
  26. Hill WL (1993) Importance of prenatal nutrition to the development of a precocial chick. Dev Psychobiol 26:237–249. doi: 10.1002/dev.420260502 PubMedCrossRefGoogle Scholar
  27. Hipfner JM, Gaston AJ, Herzberg GR, Brosnan JT, Storey AE (2003) Egg composition in relation to female age and relaying: constraints on egg production in thick-billed murres (Uria lomvia). Auk 120:645–657Google Scholar
  28. Hoyt DF (1979) Practical methods of estimating volume and fresh weight of bird eggs. Auk 96:73–77Google Scholar
  29. Ketterson ED, Nolan V (1999) Adaptation, exaptation and constraint: a hormonal perspective. Am Nat 154:S4–S25. doi: 10.1086/303280 CrossRefGoogle Scholar
  30. Kokko H, Harris MP, Wanless S (2004) Competition for breeding sites and site-dependent population regulation in a highly colonial seabird, the common guillemot Uria aalge. J Anim Ecol 73:367–376. doi: 10.1111/j.0021-8790.2004.00813.x CrossRefGoogle Scholar
  31. Kozlowski CP, Ricklefs RE (2010) Egg size and yolk steroids vary across the laying order in cockatiel clutches: a strategy for reinforcing brood hierarchies? Gen Comp Endocrinol 168:460–465. doi: 10.1016/j.ygcen.2010.06.006 PubMedCrossRefGoogle Scholar
  32. Larbi A, Kempf J, Pawelec G (2007) Oxidative stress modulation and T cell activation. Exp Gerontol 42:852–858. doi: 10.1016/j.exger.2007.05.004 PubMedCrossRefGoogle Scholar
  33. Lipar JL, Ketterson ED, Nolan V (1999) Intraclutch variation in testosterone content of red-winged blackbird eggs. Auk 116:231–235CrossRefGoogle Scholar
  34. Lipsey MW, Wilson DB (2001) Practical meta-analysis. Sage, Thousand OaksGoogle Scholar
  35. Maclean GL (1973a) The sociable weaver, part 1: description, distribution, dispersion and populations. Ostrich 44:176–190CrossRefGoogle Scholar
  36. Maclean GL (1973b) The sociable weaver, part 3: breeding biology and moult. Ostrich 44:219–240CrossRefGoogle Scholar
  37. Marshall DJ, Uller T (2007) When is a maternal effect adaptive? Oikos 116:1957–1963. doi: 10.1111/j.2007.0030-1299.16203.x CrossRefGoogle Scholar
  38. Mazuc J, Bonneaud C, Chastel O, Sorci G (2003) Social environment affects female and egg testosterone levels in the house sparrow (Passer domesticus). Ecol Lett 6:1084–1090. doi: 10.1046/j.1461-0248.2003.00535.x CrossRefGoogle Scholar
  39. McGraw KJ, Adkins-Regan E, Parker RS (2005) Maternally derived carotenoid pigments affect offspring survival, sex ratio, and sexual attractiveness in a colourful songbird. Naturwissenschaften 92:375–380. doi: 10.1007/s00114-005-0003-z PubMedCrossRefGoogle Scholar
  40. Mora O, Kuri-Melo L, Gonzalez-Gallardo A, Melendez E, Morales A, Shimada A, Varela-Echavarria A (2004) A potential role for beta-carotene in avian embryonic development. Int J Vitam Nutr Res 74:116–122. doi: 10.1024/0300-9831.74.2.116 PubMedCrossRefGoogle Scholar
  41. Mousseau TA, Fox CW (1998) The adaptive significance of maternal effects. Trends Ecol Evol 13:403–407. doi: 10.1016/S0169-5347(98)01472-4 PubMedCrossRefGoogle Scholar
  42. Müller W, Vergauwen J, Eens M (2009) Long-lasting consequences of elevated yolk testosterone levels on female reproduction. Behav Ecol Sociobiol 63:809–816. doi: 10.1007/s00265-009-0714-9 CrossRefGoogle Scholar
  43. Nager RG, Monaghan P, Houston DC (2001) The cost of egg production: increased egg production reduces future fitness in gulls. J Avian Biol 32:159–166CrossRefGoogle Scholar
  44. Navara KJ, Hill GE, Mendonça MT (2005) Variable effects of yolk androgens on growth, survival, and immunity in eastern bluebird nestlings. Physiol Biochem Zool 78:570–578. doi: 10.1086/430689 PubMedCrossRefGoogle Scholar
  45. Nilsson J-A, Råberg L (2001) The resting metabolic cost of egg-laying and nestling feeding in great tits. Oecologia 128:187–192. doi: 10.1007/s004420100653 CrossRefGoogle Scholar
  46. Owen-Ashley NT, Hasselquist D, Wingfield JC (2004) Androgens and the immunocompetence handicap hypothesis: unraveling direct and indirect pathways of immunosuppression in song sparrows. Am Nat 164:490–505. doi: 10.1086/423714 PubMedCrossRefGoogle Scholar
  47. Paitz RT, Bowden RM, Casto JM (2011) Embryonic modulation of maternal steroids in European starlings (Sturnus vulgaris). Proc R Soc Lond B 278:99–106. doi: 10.1098/rspb.2010.0813 CrossRefGoogle Scholar
  48. Poisbleau M, Demongin L, Chastel O, Eens M, Quillfeldt P (2011) Yolk androgen deposition in rockhopper penguins, a species with reversed hatching asynchrony. Gen Comp Endocrinol 170:622–628. doi: 10.1016/j.ygcen.2010.11.027 PubMedCrossRefGoogle Scholar
  49. Price T (1998) Maternal and paternal effects in birds: effects on offspring fitness. In: Mousseau TA, Fox CW (eds) Maternal effects as adaptations. Oxford University Press, New York, pp 202–226Google Scholar
  50. Royle NJ, Surai PF, Hartley IR (2001) Maternally derived androgens and antioxidants in bird eggs: complementary but opposing effects? Behav Ecol 12:381–385. doi: 10.1093/beheco/12.4.381 CrossRefGoogle Scholar
  51. Rubolini D, Romano M, Martinelli R, Leoni B, Saino N (2006) Effects of prenatal yolk androgens on armaments and ornaments of the ring-necked pheasant. Behav Ecol Sociobiol 59:549–560. doi: 10.1007/s00265-005-0080-1 CrossRefGoogle Scholar
  52. Safran RJ, Pilz KM, McGraw KJ, Correa S, Schwabl H (2008) Are yolk androgens and carotenoids in barn swallow eggs related to parental quality? Behav Ecol Sociobiol 62:427–438. doi: 10.1007/s00265-007-0470-7 CrossRefGoogle Scholar
  53. Safran RJ, McGraw KJ, Pilz KM, Correa SM (2010) Egg-yolk androgen and carotenoid deposition as a function of maternal social environment in barn swallows Hirundo rustica. J Avian Biol 41:470–478. doi: 10.1111/j.1600-048X.2010.04962.x CrossRefGoogle Scholar
  54. Saino N, Caprioli M, Romano M, Boncoraglio G, Rubolini D, Ambrosini R, Bonisoli-Alquati A, Romano A (2011a) Antioxidant defenses predict long-term survival in a passerine bird. PLoS ONE 6:e19593. doi: 10.1371/journal.pone.0019593 PubMedCrossRefGoogle Scholar
  55. Saino N, Romano M, Caprioli M, Rubolini D, Ambrosini R (2011b) Yolk carotenoids have sex-dependent effects on redox status and influence the resolution of growth trade-offs in yellow-legged gull chicks. Behav Ecol 22:411–421. doi: 10.1093/beheco/arq220 CrossRefGoogle Scholar
  56. Sandell MI, Tobler M, Hasselquist D (2009) Yolk androgens and the development of avian immunity: and experiment in jackdaws (Corvus monedula). J Exp Biol 212:815–822. doi: 10.1242/jeb.022111 PubMedCrossRefGoogle Scholar
  57. Schwabl H (1993) Yolk is a source of maternal testosterone for developing birds. Proc Nat Acad Sci USA 90:11446–11450PubMedCrossRefGoogle Scholar
  58. Schwabl H (1997) Maternal steroid hormones in the egg. In: Etches R, Harvey S (eds) Perspectives in avian endocrinology. Journal of Endocrinology Press, Bristol, pp 3–13Google Scholar
  59. Schwabl H, Mock DW, Gieg JA (1997) A hormonal mechanism for parental favouritism. Nature 386:231. doi: 10.1038/386231a0 CrossRefGoogle Scholar
  60. Schwabl H, Holmes D, Strasser R, Scheuerlein A (2012) Embryonic exposure to maternal testosterone influences age-specific mortality patterns in a captive passerine bird. Age 34:87–94. doi: 10.1007/s11357-011-9222-8 PubMedCrossRefGoogle Scholar
  61. Slagsvold T, Sandvik J, Rofstad G, Lorentsen Ö, Husby M (1984) On the adaptive value of intraclutch egg-size variation in passerines. Auk 101:685–697CrossRefGoogle Scholar
  62. Sockman KW, Schwabl H (2000) Yolk androgens reduce offspring survival. Proc R Soc Lond B 267:1451–1456. doi: 10.1098/rspb.2000.1163 CrossRefGoogle Scholar
  63. Sotherland PR, Rahn H (1987) On the composition of bird eggs. Condor 89:48–65CrossRefGoogle Scholar
  64. Spottiswoode CN (2007) Phenotypic sorting in morphology and reproductive investment among sociable weaver colonies. Oecologia 154:589–600. doi: 10.1007/s00442-007-0844-6 PubMedCrossRefGoogle Scholar
  65. Spottiswoode CN (2009) Fine-scale life-history variation in sociable weavers in relation to colony size. J Anim Ecol 78:504–512. doi: 10.1111/j.1365-2656.2008.01507.x PubMedCrossRefGoogle Scholar
  66. Stearns SC (1992) The evolution of life histories. Oxford University Press, OxfordGoogle Scholar
  67. Stearns SC (2000) Life history evolution: successes, limitations, and prospects. Naturwissenschaften 87:476–486PubMedCrossRefGoogle Scholar
  68. Surai PF, Speake BK (1998) Distribution of carotenoids from the yolk to the tissues of the chick embryo. J Nutr Biochem 9:645–651. doi: 10.1016/S0955-2863(98)00068-0 CrossRefGoogle Scholar
  69. Surai PF, Noble RC, Speake BK (1996) Tissue-specific differences in antioxidant distribution and susceptibility to lipid peroxidation during development of the chick embryo. Biochim Biophys Acta 1304:1–10PubMedCrossRefGoogle Scholar
  70. Surai PF, Speake BK, Decrock F, Groscolas R (2001a) Transfer of vitamins E and A from yolk to embryo during development of the king penguin (Aptenodytes patagonicus). Physiol Biochem Zool 74:928–936. doi: 10.1086/338062 PubMedCrossRefGoogle Scholar
  71. Surai PF, Speake BK, Sparks NHC (2001b) Carotenoids in avian nutrition and embryonic development. 1. Absorption, availability and levels in plasma and egg yolk. J Poult Sci 38:1–27. doi: 10.2141/jpsa.38.1 CrossRefGoogle Scholar
  72. Székely T, Moore AJ, Komdeur J (2010) Social behaviour: genes, ecology and evolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  73. Taborsky B, Skubic E, Bruintjes R (2007) Mothers adjust egg size to helper number in a cooperatively breeding cichlid. Behav Ecol 18:652–657. doi: 10.1093/beheco/arm026 CrossRefGoogle Scholar
  74. Tobler M, Hasselquist D, Smith HG, Sandell MI (2010) Short- and long-term consequences of prenatal testosterone for immune function: an experimental study in the zebra finch. Behav Ecol Sociobiol 64:717–727. doi: 10.1007/s00265-009-0889-0 CrossRefGoogle Scholar
  75. Verboven N, Evans NP, D’Alba L, Nager RG, Blount JD, Surai PF, Monaghan P (2005) Intra-specific interactions influence egg composition in the lesser black-backed gull (Larus fuscus). Behav Ecol Sociobiol 57:357–365. doi: 10.1007/s00265-004-0862-x CrossRefGoogle Scholar
  76. von Engelhardt N, Carere C, Dijkstra C, Groothuis TGG (2006) Sex-specific effects of yolk testosterone on survival, begging and growth of zebra finches. Proc R Soc Lond B 273:65–70. doi: 10.1098/rspb.2005.3274 CrossRefGoogle Scholar
  77. von Schantz T, Bensch S, Grahn M, Hasselquist D, Witttzell H (1999) Good genes, oxidative stress and condition-dependent sexual signals. Proc R Soc Lond B 266:1–12. doi: 10.1098/rspb.1999.0597 CrossRefGoogle Scholar
  78. Williams TD (1994) Intraspecific variation in egg size and egg composition in birds: effects on offspring fitness. Biol Rev 68:35–59. doi: 10.1111/j.1469-185X.1994.tb01485.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • René E. van Dijk
    • 1
  • Corine M. Eising
    • 2
    • 3
    • 4
  • Richard M. Merrill
    • 5
  • Filiz Karadas
    • 6
  • Ben Hatchwell
    • 1
  • Claire N. Spottiswoode
    • 2
    • 5
  1. 1.Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
  2. 2.DST/NRF Centre of Excellence at the Percy FitzPatrick Institute of African OrnithologyUniversity of Cape TownRondeboschSouth Africa
  3. 3.Behavioural Biology Research GroupUniversity of GroningenGroningenThe Netherlands
  4. 4.Centre for Ecological and Evolutionary StudiesUniversity of GroningenGroningenThe Netherlands
  5. 5.Department of ZoologyUniversity of CambridgeCambridgeUK
  6. 6.Department of Animal Science, Faculty of AgricultureUniversity of Yuzuncu YilVanTurkey

Personalised recommendations