, Volume 171, Issue 2, pp 357–365 | Cite as

Estimating global arthropod species richness: refining probabilistic models using probability bounds analysis

  • Andrew J. HamiltonEmail author
  • Vojtech Novotný
  • Edward K. Waters
  • Yves Basset
  • Kurt K. Benke
  • Peter S. Grimbacher
  • Scott E. Miller
  • G. Allan Samuelson
  • George D. Weiblen
  • Jian D. L. Yen
  • Nigel E. Stork


A key challenge in the estimation of tropical arthropod species richness is the appropriate management of the large uncertainties associated with any model. Such uncertainties had largely been ignored until recently, when we attempted to account for uncertainty associated with model variables, using Monte Carlo analysis. This model is restricted by various assumptions. Here, we use a technique known as probability bounds analysis to assess the influence of assumptions about (1) distributional form and (2) dependencies between variables, and to construct probability bounds around the original model prediction distribution. The original Monte Carlo model yielded a median estimate of 6.1 million species, with a 90 % confidence interval of [3.6, 11.4]. Here we found that the probability bounds (p-bounds) surrounding this cumulative distribution were very broad, owing to uncertainties in distributional form and dependencies between variables. Replacing the implicit assumption of pure statistical independence between variables in the model with no dependency assumptions resulted in lower and upper p-bounds at 0.5 cumulative probability (i.e., at the median estimate) of 2.9–12.7 million. From here, replacing probability distributions with probability boxes, which represent classes of distributions, led to even wider bounds (2.4–20.0 million at 0.5 cumulative probability). Even the 100th percentile of the uppermost bound produced (i.e., the absolutely most conservative scenario) did not encompass the well-known hyper-estimate of 30 million species of tropical arthropods. This supports the lower estimates made by several authors over the last two decades.


Host specificity Model Monte Carlo Uncertainty 



Cindy Hauser provided useful technical comments on a draft of this manuscript. The host specificity studies in New Guinea, upon which this model draws substantially, were supported by the National Science Foundation (USA) (DEB-0841885), Christensen Fund (USA), Grant Agency of the Czech Republic (206/09/0115), Czech Academy of Sciences, the Swedish Natural Science Research Council, Czech Ministry of Education (CZ.1.07/2.3.00/20.0064, LH11008), Otto Kinne Foundation, Darwin Initiative (UK) (19-008), International Centre of Insect Physiology and Ecology (ICIPE) and Bishop Museum. Parataxonomists in New Guinea are thanked for their assistance and are listed in Novotný et al. (2002). This paper is dedicated to the late Ken Hamilton, the consummate logician and giver.


  1. Benke KK, Hamilton AJ, Lowell K (2007) Uncertainty analysis and risk assessment in the management of environmental resources. Aust J Environ Manag 14:243–249Google Scholar
  2. Brook BW, Sodhi NS, Ng PKL (2003) Catastrophic extinctions follow deforestation in Singapore. Nature 424:420–423. doi: 10.1038/nature01795 PubMedCrossRefGoogle Scholar
  3. Burgman M (2005) Risks and decisions for conservation and environmental management, 1st edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. Casti JL (1990) Searching for Certainty, 1st edn. William Morrow and Company, LondonGoogle Scholar
  5. Colles A, Liow LH, Prinzing A (2009) Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol Lett 12:849–863. doi: 10.1111/j.1461-0248.2009.01336.x PubMedCrossRefGoogle Scholar
  6. Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: Den Boer PJ, Gradwell G (eds) Dynamics of populations. Centre for Agricultural Publishing and Documentation, Wageningen, pp 298–312Google Scholar
  7. Costello MJ, Wilson S, Houlding B (2012) Predicting total global species richness using rates of species description and estimates of taxonomic effort. Syst Biol (in press)Google Scholar
  8. Crutsinger GM, Reynolds WN, Classen AT, Sanders NJ (2008) Disparate effects of plant genotypic diversity on foliage and litter arthropod communities. Oecologia 158:65–75. doi: 10.1007/s00442-008-1130-y PubMedCrossRefGoogle Scholar
  9. Donoso DA, Johnston MK, Kaspari M (2010) Trees as templates for tropical litter arthropod diversity. Oecologia 164:201–211. doi: 10.1007/s00442-010-1607-3 PubMedCrossRefGoogle Scholar
  10. Erwin TL (1982) Tropical forests: their richness in Coleoptera and other arthropod species. Coleopt Bull 36:74–75Google Scholar
  11. Erwin TL (1988) The tropical forest canopy: the heart of biotic diversity. In: Wilson EO (ed) Biodiversity. National Academy Press, Washington, pp 123–129Google Scholar
  12. Ferson S (1996) What Monte Carlo methods cannot do. Hum Ecol Risk Assess 2:990–1007. doi: 10.1080/10807039609383659 CrossRefGoogle Scholar
  13. Ferson S (2002) RAMAS Risk Calc 4.0 software: risk assessment with uncertain numbers. Lewis, Boca RatonGoogle Scholar
  14. Ferson S, Ginzburg LR (1996) Different methods are needed to propagate ignorance and variability. Reliab Eng Syst Safe 54:133–144. doi: 10.1016/S0951-8320(96)00071-3 CrossRefGoogle Scholar
  15. Ferson S, Nelsen RB, Hajagos J, Berleant DJ, Zhang J, Tucker WT, Ginzburg LR, Oberkampf WL (2004) Dependence in probabilistic modelling, Dempster–Shafer theory, and probability bounds analysis. Sandia National Laboratories, New Mexico.
  16. Frank MJ, Nelsen RB, Schweizer B (1987) Best-possible bounds for the distribution of a sum—a problem of Kolmogorov. Probab Theory Rel 74:199–211. doi: 10.1007/BF00569989 CrossRefGoogle Scholar
  17. Fréchet M (1935) Généralisations du theorem des probabilities totales. Fund Math 25:379–387Google Scholar
  18. Goßner MM, Chao A, Bailey RI, Prinzing A (2009) Native fauna on exotic trees: phylogenetic conservatism and geographic contingency in two lineages of phytophages on two lineages of trees. Am Nat 173:599–614PubMedCrossRefGoogle Scholar
  19. Grimbacher PS, Stork NE (2007) Vertical stratification of feeding guilds and body size in beetle assemblages from an Australian tropical rainforest. Austral Ecol 32:77–85. doi: 10.1111/j.1442-9993.2007.01735.x CrossRefGoogle Scholar
  20. Hamilton AJ, Basset Y, Benke KK, Grimbacher PS, Miller SE, Novotny′ V, Samuelson GA, Stork NE, Weiblen GD, Yen JDL (2010) Quantifying uncertainty in tropical arthropod species richness estimation. Am Nat 176:90–95. doi: 10.1086/652998 PubMedCrossRefGoogle Scholar
  21. Hamilton AJ, Basset Y, Benke KK, Grimbacher PS, Miller SE, Novotny′ V, Samuelson GA, Stork NE, Weiblen GD, Yen JDL (2011) Correction: quantifying uncertainty in tropical arthropod species richness estimation. Am Nat 177:544–545CrossRefGoogle Scholar
  22. Hammond PM (1992) Species inventory. In: Groombridge B (ed) Global biodiversity: status of the earth’s living resources. Chapman and Hall, London, pp 17–39Google Scholar
  23. Janz N, Nylin S, Wahlberg N (2006) Diversity begets diversity: host expansions and the diversification of plant-feeding insects. BMC Evol Biol 6:1–10. doi: 10.1186/1471-2148-6-4 CrossRefGoogle Scholar
  24. Janzen DH (1970) Herbivores and number of tree species in tropical forests. Am Nat 104:501–528CrossRefGoogle Scholar
  25. Jonzen N, Cardinale M, Gårdmark A, Arrhenius F, Lundberg P (2002) Risk of collapse in the eastern Baltic cod fishery. Mar Ecol Prog Ser 240:225–233CrossRefGoogle Scholar
  26. Joppa LN, Roberts DL, Pimm SL (2011) How many species of flowering plants are there? Proc R Soc Lond B 278:554–559CrossRefGoogle Scholar
  27. Kahneman D, Tversky A (1982) Variants of uncertainty. In: Kahneman D, Slovic P, Tversky A (eds) Judgements under uncertainty: heuristics and biases. Cambridge University Press, Cambridge, pp 509–520Google Scholar
  28. Karavarsamis N, Hamilton AJ (2010) Estimators of annual infection risk. J Water Health 80:365–373. doi: 10.2166/wh.2010.045 CrossRefGoogle Scholar
  29. Mara DD, Sleigh PA, Blumenthal UJ, Carr RM (2007) Health risks in wastewater irrigation: comparing estimates from quantitative microbial risk analyses and epidemiological studies. J Water Health 5:39–50. doi: 10.2166/wh.2006.055 PubMedCrossRefGoogle Scholar
  30. May RM (1990) How many species? Philos Trans R Soc Lond B 330:293–304. doi: 10.1098/rstb.1990.0200 CrossRefGoogle Scholar
  31. May RM (2010) Tropical arthropod species, more or less. Science 329:41–42. doi: 10.1126/science.1191058 PubMedCrossRefGoogle Scholar
  32. McKay MD, Beckman RJ, Conover WJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21:239–245Google Scholar
  33. Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on earth and in the ocean. PLoS Biol 9:e1001127PubMedCrossRefGoogle Scholar
  34. Morgan MG, Henrion M (1990) Uncertainty: a guide to dealing with uncertainty in quantitative risk and policy analysis, 1st edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  35. Nielsen ES, Mound LA (2000) Global diversity of insects: the problems of estimating numbers. In: Raven PH, Williams T (eds) Nature and human society: the quest for a sustainable world. National Academy Press, Washington, pp 212–222Google Scholar
  36. Novotný V, Basset Y, Miller SE, Weiblen GD, Bremer B, Cizek L, Drozd P (2002) Low host specificity of herbivorous insects in a tropical forest. Nature 416:841–844. doi: 10.1038/416841a PubMedCrossRefGoogle Scholar
  37. Ødegaard F (2000) How many species of arthropods? Erwin’s estimate revised. Biol J Linn Soc 71:583–597. doi: 10.1006/bijl.2000.0468 CrossRefGoogle Scholar
  38. Regan HM, Hope BK, Ferson S (2002) Analysis and portrayal of uncertainty in a food web exposure model. Human Ecol Risk Assess 8:1757–1777CrossRefGoogle Scholar
  39. Regan HM, Ferson S, Berleant D (2004) Equivalence of five methods for bounding uncertainty. Int J Approx Reason 36:1–30CrossRefGoogle Scholar
  40. Ross HH, Ross CA, Ross JPR (1982) A textbook of entomology, 4th edn. Wiley, New YorkGoogle Scholar
  41. Stork NE (1988) Insect diversity: facts, fiction and speculation. Biol J Linn Soc 35:321–337. doi: 10.1111/j.1095-8312.1988.tb00474.x CrossRefGoogle Scholar
  42. Stork NE (1993) How many species are there? Biodivers Conserv 2:215–232. doi: 10.1007/BF00056669 CrossRefGoogle Scholar
  43. Thomas CD (1990) Fewer species. Nature 347:237. doi: 10.1038/347237a0 CrossRefGoogle Scholar
  44. Tucker WT, Ferson S (2003) Probability bounds analysis in environmental risk assessment, 1st edn. Applied Biomathematics, SetauketGoogle Scholar
  45. Vose D (2000) Risk analysis: a quantitative guide, 2nd edn. Wiley, ChichesterGoogle Scholar
  46. Williamson RC, Downs T (1990) Probabilistic arithmetic I: numerical methods for calculating convolutions and dependency bounds. Int J Approx Reason 4:89–158CrossRefGoogle Scholar
  47. Wilson SP, Costello MJ (2005) Predicting future discoveries of European marine species by using a nonhomogeneous renewal process. App Stat 54:897–918Google Scholar
  48. Yeates DK, Meier R, Wiegmann BM (2003) Phylogeny of true flies (Diptera): a 250 million year old success story in terrestrial diversification. Entomol Abh 61:170–172Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Andrew J. Hamilton
    • 1
    Email author
  • Vojtech Novotný
    • 2
    • 3
  • Edward K. Waters
    • 4
  • Yves Basset
    • 5
  • Kurt K. Benke
    • 6
  • Peter S. Grimbacher
    • 1
  • Scott E. Miller
    • 7
  • G. Allan Samuelson
    • 8
  • George D. Weiblen
    • 9
  • Jian D. L. Yen
    • 10
  • Nigel E. Stork
    • 11
  1. 1.Department of Agriculture and Food Systems, Melbourne School of Land and EnvironmentThe University of MelbourneDookie CollegeAustralia
  2. 2.Biology CentreCzech Academy of SciencesCeske BudejoviceCzech Republic
  3. 3.Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
  4. 4.The University of Notre Dame AustraliaBroadwayAustralia
  5. 5.Smithsonian Tropical Research InstituteApartadoPanama
  6. 6.Department of Primary IndustriesParkvilleAustralia
  7. 7.National Museum of Natural HistorySmithsonian InstitutionWashingtonUSA
  8. 8.Bishop MuseumHonoluluUSA
  9. 9.Department of Plant BiologyUniversity of MinnesotaSt PaulUSA
  10. 10.School of Biological SciencesMonash UniversityClaytonAustralia
  11. 11.Griffith School of EnvironmentGriffith UniversityNathanAustralia

Personalised recommendations