, Volume 171, Issue 1, pp 25–37 | Cite as

Root niche partitioning among grasses, saplings, and trees measured using a tracer technique

Physiological ecology - Original research


Niche partitioning of resources by plants is believed to be a fundamental aspect of plant coexistence and biogeochemical cycles; however, measurements of the timing and location of resource use are often lacking because of the difficulties of belowground research. To measure niche partitioning of soil water by grasses, planted saplings, and trees in a mesic savanna (Kruger National Park, South Africa), we injected deuterium oxide into 102,000 points in 15, 154-m2 plots randomly assigned to one of five depths (0–120 cm) and one of three time periods during the 2008/2009 growing season. Grasses, saplings and trees all demonstrated an exponential decline in water uptake early in the season when resources were abundant. Later in the season, when resources were scarce, grasses continued to extract the most water from the shallowest soil depths (5 cm), but saplings and trees shifted water uptake to deeper depths (30–60 cm). Saplings, in particular, rapidly established roots to at least 1 m and used these deep roots to a greater extent than grasses or trees. Helping to resolve contradictory observations of the relative importance of deep and shallow roots, our results showed that grasses, saplings and trees all extract the most water from shallow soils when it is available but that woody plants can rapidly shift water uptake to deeper soils when resources are scarce. Results highlight the importance of temporal changes in water uptake and the problems with inferring spatial and temporal partitioning of soil water uptake from root biomass measurements alone.


Deuterium Injection Root Savanna Tracer Water-use 

Supplementary material

442_2012_2390_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 22 kb)


  1. Adler PB, Ellner SP, Levine JM (2010) Coexistence of perennial plants: an embarrassment of niches. Ecol Lett 13:1019–1029. doi:10.1111/j.1461-0248.2010.01496.x PubMedGoogle Scholar
  2. Albertson FW (1937) Ecology of mixed prairie in west-central Kansas. Ecol Monogr 7:481–587. doi:10.2307/1943101 CrossRefGoogle Scholar
  3. Anonymous (2010) http://www.sanparks.org/parks/kruger/conservation/scientific/weather/. Scientific Services, Weather, Kruger National Park
  4. Archibald S, Bond WJ (2003) Growing tall vs growing wide: tree architecture and allometry of Acacia karroo in forest, savanna, and arid environments. Oikos 102:3–14. doi:10.1034/j.1600-0706.2003.12181.x CrossRefGoogle Scholar
  5. Archibald S, Scholes RJ (2007) Leaf green-up in a semi-arid African savanna—separating tree and grass responses to environmental cues. J Veg Sci 18:583–594. doi:10.1111/j.1654-1103.2007.tb02572.x Google Scholar
  6. Arora VK, Boer GJ (2003) A representation of variable root distribution in dynamic vegetation models. Earth Interact 7:1–19CrossRefGoogle Scholar
  7. Ashton IW, Miller AE, Bowman WD, Suding KN (2010) Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology 91:3252–3260. doi:10.1890/09-1849.1 PubMedCrossRefGoogle Scholar
  8. Bishop K, Dambrine E (1995) Localization of tree water uptake in Scots pine and Norway spruce with hydrological tracers. Can J For Res 25:286–297CrossRefGoogle Scholar
  9. Brown JR, Archer S (1999) Shrub invasion of grassland: recruitment is continuous and not regulated by herbaceous biomass or density. Ecology 80:2385–2396. doi:10.1890/0012-9658(1999)080 CrossRefGoogle Scholar
  10. Brown JR, Scanlan JC, McIvor JG (1998) Competition by herbs as a limiting factor in shrub invasion in grassland: a test with different growth forms. J Veg Sci 9:829–836. doi:10.2307/3237048 CrossRefGoogle Scholar
  11. Casper BB, Schenk HJ, Jackson RB (2003) Defining a plant’s belowground zone of influence. Ecology 84:2313–2321. doi:10.1890/02-0287 CrossRefGoogle Scholar
  12. Chen XY (2004) Seasonal patterns of fine-root productivity and turnover in a tropical savanna of northern Australia. J Trop Ecol 20:221–224. doi:10.1017/S0266467403001135 CrossRefGoogle Scholar
  13. Childes SL (1988) Phenology of nine common woody species in semi-arid, deciduous Kalahari sand vegetation. Vegetatio 79:151–163. doi:10.1007/BF00044907 CrossRefGoogle Scholar
  14. Daly C, Bachelet D, Lenihan JM, Neilson RP, Parton W, Ojima D (2000) Dynamic simulation of tree-grass interactions for global change studies. Ecol Appl 10:449–469. doi:10.1890/1051-0761(2000)010 Google Scholar
  15. Dawson TE, Ehleringer JR (1991) Streamside trees that do not use stream water. Nature 350:335–337. doi:10.1038/350335a0 CrossRefGoogle Scholar
  16. Dawson TE, Ehleringer JR (1993) Isotopic enrichment of water in the woody tissues of plants—implications for plant water source, water-uptake, and other studies which use the stable isotopic composition of cellulose. Geochem Cosmochim Acta 57:3487–3492. doi:10.1016/0016-7037(93)90554-A CrossRefGoogle Scholar
  17. Dickie IA, Schnitzer SA, Reich PB, Hobbie SE (2007) Is oak establishment in old-fields and savanna openings context dependent? J Ecol 95:309–320. doi:10.1111/j.1365-2745.2006.01202.x CrossRefGoogle Scholar
  18. Doody TM, Benyon RG (2010) Direct measurements of groundwater uptake through tree roots in a cave. Ecohydrology 4:644–649. doi:10.1002/eco.152 CrossRefGoogle Scholar
  19. February EC, Higgins SI (2010) The distribution of tree and grass roots in savannas in relation to soil nitrogen and water. S Afr J Bot 76:517–523. doi:10.1016/j.sajb.2010.04.001 CrossRefGoogle Scholar
  20. Flint AL, Campbell GS, Ellett KM, Calissendorff C (2002) Calibration and temperature correction of heat dissipation matric potential sensors. Soil Sci Soc Am J 66:1439–1445CrossRefGoogle Scholar
  21. Foley JA, et al. (1996) An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem Cycl 10:603–628. doi:10.1029/96GB02692 CrossRefGoogle Scholar
  22. Fravolini A, Hultine KR, Brugnoli E, Gazal R, English NB, Williams DG (2005) Precipitation pulse use by an invasive woody legume: the role of soil texture and pulse size. Oecologia 144:618–627. doi:10.1093/jxb/erf084 PubMedCrossRefGoogle Scholar
  23. Goldstein G, Meinzer FC, Bucci SJ, Scholz FG, Franco AC, Hoffmann WA (2008) Water economy of Neotropical savanna trees: six paradigms revisited. Tree Physiol 28:395–404. doi:10.1093/treephys/28.3.395 PubMedCrossRefGoogle Scholar
  24. Goodman L (1960) On the exact variance of products. J Am Stat Assoc 55:708–713. doi:10.2307/2281592 CrossRefGoogle Scholar
  25. Gotelli NJ, Entsminger GL (2011) EcoSim: null models software for ecology. 7.0 Edn. Acquired Intelligence and Kesey-Bear, Jericho, VT, USAGoogle Scholar
  26. Hipondoka MHT, Aranibar JN, Chirara C, Lihavha M, Macko SA (2003) Vertical distribution of grass and tree roots in arid ecosystems of Southern Africa: niche differentiation or competition? J Arid Environ 54:319–325. doi:10.1006/jare.2002.1093 CrossRefGoogle Scholar
  27. Jackson RB, Moore LA, Hoffmann WA, Pockman WT, Linder CR (1999) Ecosystem rooting depth determined with caves and DNA. P Natl Acad Sci USA 96:11387–11392. doi:10.1073/pnas.96.20.11387 CrossRefGoogle Scholar
  28. Jurena PN, Archer S (2003) Woody plant establishment and spatial heterogeneity in grasslands. Ecology 84:907–919. doi:10.1890/0012-9658(2003)084 CrossRefGoogle Scholar
  29. Kulmatiski A, Beard KH, Stark JM (2006) Exotic plant communities shift water-use timing in a shrub-steppe ecosystem. Plant Soil 288:271–284. doi:10.1007/s11104-006-9115-2 CrossRefGoogle Scholar
  30. Kulmatiski A, Beard KH, Verweij RJT, February EC (2010) A depth-controlled tracer technique measures vertical, horizontal and temporal patterns of water use by trees and grasses in a subtropical savanna. New Phytol 188:199–209. doi:10.1111/j.1469-8137.2010.03338.x PubMedCrossRefGoogle Scholar
  31. Leroux X, Bariac T, Mariotti A (1995) Spatial partitioning of the soil-water resource between grass and shrub components in a west African humid savanna. Oecologia 104:147–155. doi:10.1007/BF00328579 CrossRefGoogle Scholar
  32. Leyland RC, Witthüser KT (2008) Regional description of the groundwater chemistry of the Kruger National Park: a report to the Water Research Committee. Report KV 211/08, South AfricaGoogle Scholar
  33. McKane RB, et al. (2002) Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415:68–71. doi:10.1038/415068a PubMedCrossRefGoogle Scholar
  34. Meinzer FC, et al. (2006) Dynamics of water transport and storage in conifers studied with deuterium and heat tracing techniques. Plant Cell Environ 29:105–114. doi:10.1111/j.1365-3040.2005.01404.x PubMedCrossRefGoogle Scholar
  35. Moe SR, Rutina LP, Hytteborn H, du Toit JT (2009) What controls woodland regeneration after elephants have killed the big trees? J Appl Ecol 46:223–230. doi:10.1111/j.1365-2664.2008.01595.x CrossRefGoogle Scholar
  36. Newman BD, et al. (2006) Ecohydrology of water-limited environments: a scientific vision. Water Resour Res 42:W06302. doi:10.1029/2005WR004141 CrossRefGoogle Scholar
  37. Nippert JB, Knapp AK (2007) Soil water partitioning contributes to species coexistence in tallgrass prairie. Oikos 116:1017–1029. doi:10.1111/j.2007.0030-1299.15630.x CrossRefGoogle Scholar
  38. Ogle K, Wolpert RL, Reynolds JF (2004) Reconstructing plant root area and water uptake profiles. Ecology 85:1967–1978. doi:10.1890/03-0346 CrossRefGoogle Scholar
  39. Peek MS, Leffler AJ, Ivans CY, Ryel RJ, Caldwell MM (2005) Fine root distribution and persistence under field conditions of three co-occurring Great Basin species of different life form. New Phytol 165:171–180. doi:10.1111/j.1469-8137.2004.01186.x PubMedCrossRefGoogle Scholar
  40. Penuelas J, Filella I (2003) Deuterium labelling of roots provides evidence of deep water access and hydraulic lift by Pinus nigra in a Mediterranean forest of NE Spain. Environ Exp Bot 49:201–208. doi:10.1016/S0098-8472(02)00070-9 CrossRefGoogle Scholar
  41. Pianka ER (1973) The Structure of lizard communities. Annu Rev Ecol Syst 4:53–74Google Scholar
  42. Riginos C (2009) Grass competition suppresses savanna tree growth across multiple demographic stages. Ecology 90:335–340. doi:10.1890/08-0462.1 PubMedCrossRefGoogle Scholar
  43. Rodriguez MV, Bertiller MB, Bisigato A (2007) Are fine roots of both shrubs and perennial grasses able to occupy the upper soil layer? A case study in the arid Patagonian Monte with non-seasonal precipitation. Plant Soil 300:281–288. doi:10.1007/s11104-007-9415-1 CrossRefGoogle Scholar
  44. Sankaran M, Ratnam J, Hanan NP (2004) Tree-grass coexistence in savannas revisited—insights from an examination of assumptions and mechanisms invoked in existing models. Ecol Lett 7:480–490. doi:10.1111/j.1461-0248.2004.00596.x CrossRefGoogle Scholar
  45. Sankaran M, et al. (2005) Determinants of woody cover in African savannas. Nature 438:846–849. doi::10.1038/nature04070 PubMedCrossRefGoogle Scholar
  46. Scanlon TM, Albertson JD (2003) Inferred controls on tree/grass composition in a savanna ecosystem: combining 16-year normalized difference vegetation index data with a dynamic soil moisture model. Water Resour Res 39:1224. doi:10.1029/2002WR001881 CrossRefGoogle Scholar
  47. Schenk HJ (2008) Soil depth, plant rooting strategies and species’ niches. New Phytol 178:223–225. doi:10.1111/j.1469-8137.2008.02427.x PubMedCrossRefGoogle Scholar
  48. Schenk HJ, Jackson RB (2002) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480–494. doi:10.1046/j.1365-2745.2002.00682.x CrossRefGoogle Scholar
  49. Scholes RJ, Archer SR (1997) Tree-grass interactions in savannas. Annu Rev Ecol Evol S 28:517–544. doi:10.1146/annurev.ecolsys.28.1.517 CrossRefGoogle Scholar
  50. Schwinning S, Davis K, Richardson L, Ehleringer JR (2002) Deuterium enriched irrigation indicates different forms of rain use in shrub/grass species of the Colorado Plateau. Oecologia 130:345–355. doi:10.1007/s00442-001-0817-0 CrossRefGoogle Scholar
  51. Seyfried MS, et al. (2005) Ecohydrological control of deep drainage in arid and semiarid regions. Ecology 86:277–287. doi:10.1890/03-0568 CrossRefGoogle Scholar
  52. Sperry TM (1935) Root systems in an Illinois prairie. Ecology 16:178–202CrossRefGoogle Scholar
  53. Staver AC, Bond WJ, Stock WD, van Rensburg SJ, Waldram MS (2009) Browsing and fire interact to suppress tree density in an African savanna. Ecol Appl 19:1909–1919. doi:10.1890/08-1907.1 PubMedCrossRefGoogle Scholar
  54. Vendramini PF, Sternberg L (2007) A faster plant stem-water extraction method. Rapid Comm Mass Spectrom 21:164–168. doi:10.1002/rcm.2826 CrossRefGoogle Scholar
  55. Walter H (1971) Ecology of tropical and subtropical vegetation. Oliver and Boyd, EdinburghGoogle Scholar
  56. Weltzin JF, McPherson GR (1997) Spatial and temporal soil moisture resource partitioning by trees and grasses in a temperate savanna, Arizona, USA. Oecologia 112:156–164CrossRefGoogle Scholar
  57. Weng ES, Luo YQ (2008) Soil hydrological properties regulate grassland ecosystem responses to multifactor global change: a modeling analysis. J Geophys Res 113:G03003. doi:10.1029/2007JG000539 CrossRefGoogle Scholar
  58. Williams CA, Albertson JD (2004) Soil moisture controls on canopy-scale water and carbon fluxes in an African savanna. Water Resour Res 40:W09302. doi:10.1029/2004WR003208 CrossRefGoogle Scholar
  59. Winemiller KO, Pianka ER (1990) Organization in natural assemblages of desert lizards and tropical fishes. Ecol Monogr 60:27–55. doi:10.2307/1943025 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of AlaskaAnchorageUSA
  2. 2.Department of Plants, Soils and ClimateUtah State UniversityLoganUSA
  3. 3.Department of Wildland Resources and the Ecology CenterUtah State UniversityLoganUSA

Personalised recommendations