, Volume 170, Issue 3, pp 867–875 | Cite as

High urban population density of birds reflects their timing of urbanization

  • Anders Pape MøllerEmail author
  • Mario Diaz
  • Einar Flensted-Jensen
  • Tomas Grim
  • Juan Diego Ibáñez-Álamo
  • Jukka Jokimäki
  • Raivo Mänd
  • Gábor Markó
  • Piotr Tryjanowski
Global change ecology - Original research


Living organisms generally occur at the highest population density in the most suitable habitat. Therefore, invasion of and adaptation to novel habitats imply a gradual increase in population density, from that at or below what was found in the ancestral habitat to a density that may reach higher levels in the novel habitat following adaptation to that habitat. We tested this prediction of invasion biology by analyzing data on population density of breeding birds in their ancestral rural habitats and in matched nearby urban habitats that have been colonized recently across a continental latitudinal gradient. We estimated population density in the two types of habitats using extensive point census bird counts, and we obtained information on the year of urbanization when population density in urban habitats reached levels higher than that of the ancestral rural habitat from published records and estimates by experienced ornithologists. Both the difference in population density between urban and rural habitats and the year of urbanization were significantly repeatable when analyzing multiple populations of the same species across Europe. Population density was on average 30 % higher in urban than in rural habitats, although density reached as much as 100-fold higher in urban habitats in some species. Invasive urban bird species that colonized urban environments over a long period achieved the largest increases in population density compared to their ancestral rural habitats. This was independent of whether species were anciently or recently urbanized, providing a unique cross-validation of timing of urban invasions. These results suggest that successful invasion of urban habitats was associated with gradual adaptation to these habitats as shown by a significant increase in population density in urban habitats over time.


Adaptation Birds Cross-validation Invasion Population density 



Two anonymous reviewers provided helpful suggestions and proposed the analyses of effects of ancient or recent urbanization. R.M. was financially supported by the Estonian Ministry of Education and Science (target-financing project number 0180004s09) and the European Union through the European Regional Development Fund (Center of Excellence FIBIR). T.G. was supported by the Human Frontier Science Program (RGY69/07) and MSM6198959212. J.J. received support from the EU Regional Development Fund via the project “Rovaniemen kaupunkilintualtas”. G.M. was supported by TÁMOP-4.2.1./B-09/1-KMR-2010-0005 grant. E. Leibak, M. Martín-Vivaldi, A. Tinaut, and J. M. Pleguezuelos kindly provided information on timing of urbanization. I. Aus, Z. Bajor, A. Dvorska, and A. Jair helped with fieldwork.

Supplementary material

442_2012_2355_MOESM1_ESM.doc (338 kb)
Supplementary material 1 (DOC 437 kb)


  1. Alberti M (2005) The effects of urban patterns on ecosystem function. Int Reg Sci Rev 28:168–192CrossRefGoogle Scholar
  2. Anderies JM, Katti M, Shochat E (2007) Living in the city: resource availability, predation, and bird population dynamics in urban areas. J Theor Biol 247:36–49PubMedCrossRefGoogle Scholar
  3. Baratti M, Cordaro M, Dessi-Fulgheri F, Vannini M, Fratini S (2009) Molecular and ecological characterization of urban populations of the mallard (Anas platyrhynchos) in Italy. Italy J Zool 76:330–339CrossRefGoogle Scholar
  4. Bezzel E (1985) Birdlife in intensively used rural and urban environments. Ornis Fenn 62:90–95Google Scholar
  5. Björklund M, Ruiz I, Senar JC (2010) Genetic differentiation in the urban habitat: the great tits (Parus major) of the parks of Barcelona city. Biol J Linn Soc 99:9–19CrossRefGoogle Scholar
  6. Bonaparte C-L (1828) Ornithologie compare de Rome et de Philadelphie. RomeGoogle Scholar
  7. Brown JH (1995) Macroecology. Chicago University Press, ChicagoGoogle Scholar
  8. Brown JH, Lomolino MV (1998) Biogeography, 2nd edn. Sinauer, SunderlandGoogle Scholar
  9. Carrete M, Tella JL (2011) Inter-individual variability in fear of humans and relative brain size of the species are related to contemporary urban invasion in birds. PLoS ONE 6(4):e18859PubMedCrossRefGoogle Scholar
  10. Chace JF, Walsh JJ (2006) Urban effects on native avifauna: a review. Landsc Urban Plan 74:46–69CrossRefGoogle Scholar
  11. Coppedge BR, Engle DM, Fuhlendorf SD, Masters RE, Gregory MS (2001) Urban sprawl and juniper encroachment effects on abundance of wintering passerines in Oklahoma. In: Marzluff JM, Bowman R, Donelly R (eds) Avian ecology and conservation in an urbanizing world. Kluwer, Dordrecht, pp 225–242CrossRefGoogle Scholar
  12. Cramp S, Perrins CM (eds) (1977–1994) The birds of the Western Palearctic, vols 1–9. Oxford University Press, OxfordGoogle Scholar
  13. Crispo E, Hendry AP (2005) Does time since colonization influence isolation by distance? A meta-analysis. Conserv Genet 6:665–682CrossRefGoogle Scholar
  14. Croci S, Butet A, Clergeau P (2008) Does urbanization filter birds on the basis of their biological traits? Condor 110:223–240CrossRefGoogle Scholar
  15. Davis MA (2009) Invasion biology. Oxford University Press, OxfordGoogle Scholar
  16. Dyrcz A (1963) Comparative studies on the avifauna of wood and park. Acta Ornithol 12:177–208Google Scholar
  17. European Commission (2006) Urban sprawl in Europe. European Environmental Agency, CopenhagenGoogle Scholar
  18. Evans KL, Gaston KJ, Frantz AC, Simeoni M, Sharp SP, McGowan A, Dawson DA, Walasz K, Partecke J, Burke T, Hatchwell BJ (2009) Independent colonization of multiple urban centres by a formerly forest specialist bird species. Proc R Soc Lond B 276:2403–2410CrossRefGoogle Scholar
  19. Evans KL, Chamberlain DE, Hatchwell BJ, Gregory RD, Gaston KJ (2010) What makes an urban bird? Glob Change Biol 17:32–44CrossRefGoogle Scholar
  20. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, New YorkGoogle Scholar
  21. Fløystrup A (1920) Fugleliv i Kjøbenhavn: Iagttagelser fra Østre Anlæg og Botanisk Have. Dansk Orn Foren Tidsskr 14:1–60Google Scholar
  22. Fløystrup A (1925) Fugleliv i Kjøbenhavn: Fortsatte iagttagelser fra Østre Anlæg og Botanisk Have. Dansk Orn Foren Tidsskr 19:1–18Google Scholar
  23. Fulgione D, Rippa D, Procaccini G, Milone M (2000) Urbanisation and the genetic structure of Passer italiae (Viellot 1817) populations in the south of Italy. Ethol Ecol Evol 12:123–130CrossRefGoogle Scholar
  24. Gesner C (1669) Vollkommenes Vogelbuch. Schlütersche, Hannover (reprint 1981)Google Scholar
  25. Gilbert OL (1989) The ecology of urban habitats. Chapman and Hall, LondonCrossRefGoogle Scholar
  26. Gliwicz J, Goszczynski J, Luniak M (1994) Characteristic features of animal populations under synurbanization: the case of the blackbirds and the striped field mouse. Mem Zool 49:237–244Google Scholar
  27. Glutz von Blotzheim UN, Bauer KM (eds) (1985–1997) Handbuch der Vögel Mitteleuropas, vols 1–14. AULA, WiesbadenGoogle Scholar
  28. Graczyk R (1974) The experiment of settling of urbanized population of Poznan blackbird (Turdus merula L.) to Kiev (USSR) and examination of certain elements of innate behaviour. Roczn Akad Roln Pozn 65:49–64Google Scholar
  29. Gram C (1908) Fuglelivet i København og omegn for halvhundrede aar siden. Dansk Orn Foren Tidsskr 3:27–36Google Scholar
  30. Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319:756–760PubMedCrossRefGoogle Scholar
  31. Klausnitzer B (1989) Verstädterung von Tieren. Neue Brehm-Bücherei, Wittenberg LutherstadtGoogle Scholar
  32. Lockwood J, Hoopes M, Marchetti M (2006) Invasion ecology. Blackwell, OxfordGoogle Scholar
  33. Luniak M, Mulsow R, Walasz K (1990) Urbanization of the European blackbird: expansion and adaptations of urban population. In: Luniak M (ed) Urban ecological studies in Central and Eastern Europe. Ossolineum, Warsaw, pp 87–199Google Scholar
  34. Marzluff JM, Bowman R, Donnelly R (2001) A historical perspective on urban bird research: trend, terms, and approaches. In: Bowman R, Donelly R, Marzluff JM (eds) Avian Ecology and Conservation in an Urbanizing World. Kluwer, Norwell, pp 20–47CrossRefGoogle Scholar
  35. Miller JR (2005) Biodiversity conservation and the extinction of experience. Trends Ecol Evol 20:430–434PubMedCrossRefGoogle Scholar
  36. Møller AP (1992) The hirundines. Natur og Museum 31:1–32Google Scholar
  37. Møller AP (2008a) Flight distance of urban birds, predation and selection for urban life. Behav Ecol Sociobiol 63:63–75CrossRefGoogle Scholar
  38. Møller AP (2008b) Flight distance and population trends in European breeding birds. Behav Ecol 19:1095–1102CrossRefGoogle Scholar
  39. Møller AP (2009) Successful city dwellers: a comparative study of the ecological characteristics of urban birds in the Western Palearctic. Oecologia 159:849–858PubMedCrossRefGoogle Scholar
  40. Møller AP (2010a) Interspecific variation in fear responses predicts urbanization in birds. Behav Ecol 21:365–371CrossRefGoogle Scholar
  41. Møller AP (2010b) The fitness benefit of association with humans: elevated success of birds breeding indoors. Behav Ecol 21:913–918CrossRefGoogle Scholar
  42. Møller AP (2011) Song post height in relation to predator diversity and urbanization. Ethology 117:529–538CrossRefGoogle Scholar
  43. Møller AP, Ibáñez-Álamo JD (2012) Capture behavior of urban birds provides evidence of predation being involved in urbanization. Anim Behav (in press)Google Scholar
  44. Møller AP, Jennions MD (2002) How much variance can be explained by ecologists and evolutionary biologists? Oecologia 132:492–500CrossRefGoogle Scholar
  45. Møller AP, Erritzøe J, Karadas F (2009) Levels of antioxidants in rural and urban birds and their consequences. Oecologia 163:35–45PubMedCrossRefGoogle Scholar
  46. Parmelee A (1959) All the birds of the bible: their stories, identification and meaning. Lutterworth, LondonGoogle Scholar
  47. Rebele F (1994) Urban ecology and special features of urban ecosystems. Glob Ecol Biogeogr Lett 4:173–187CrossRefGoogle Scholar
  48. Rutkowski R, Rejt L, Gryczynska-Siematkowska A, Jagolkowska P (2005) Urbanization gradient and genetic variability of birds: example of kestrels in Warsaw. Berkut 14:130–136Google Scholar
  49. SAS Institute Inc (2000) JMP. SAS Institute, CaryGoogle Scholar
  50. Schneider A, Friedl MA, Potere D (2009) A new map of global urban extent from MODIS satellite data. Environ Res Lett. doi: 10.1088/1748-9326/4/4/044003 Google Scholar
  51. Sochat E (2004) Credit or debit? Resource input changes population dynamics of city slicker birds. Oikos 106:622–626CrossRefGoogle Scholar
  52. Stephan B (1999) Die Amsel. Neue Brehm-Bücherei, Wittenberg-LutherstadtGoogle Scholar
  53. Summers-Smith D (1963) The house sparrow. Collins, LondonGoogle Scholar
  54. Turner WR, Nakamura T, Dinetti M (2004) Global urbanization and the separation of humans from nature. Bioscience 54:585–590CrossRefGoogle Scholar
  55. United Nations (2007) World urbanization prospects: the 2007 revisions. United Nations, New YorkGoogle Scholar
  56. Voříšek P, Klvanova A, Wotton S, Gregory RD (2010) A best practice guide for wild bird monitoring schemes. European Union, BruxellesGoogle Scholar
  57. Vuorisalo T, Andersson H, Hugg T, Lahtinen R, Laaksonen H, Lehikoinen E (2003) Urban development from an avian perspective: causes of hooded crow (Corvus corone cornix) urbanisation in two Finnish cities. Landsc Urban Plan 62:69–87CrossRefGoogle Scholar
  58. Zhang S, Lei F, Liu S, Li D, Chen C, Wang P (2011) Variation in baseline corticosterone levels of tree sparrow (Passer montanus) populations along an urban gradient. J Ornithol 152:801–806CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Anders Pape Møller
    • 1
    Email author
  • Mario Diaz
    • 2
  • Einar Flensted-Jensen
    • 3
  • Tomas Grim
    • 4
  • Juan Diego Ibáñez-Álamo
    • 5
  • Jukka Jokimäki
    • 6
  • Raivo Mänd
    • 7
  • Gábor Markó
    • 8
    • 9
  • Piotr Tryjanowski
    • 10
  1. 1.Laboratoire d’Ecologie, Systématique et Evolution, CNRS UMR 8079Université Paris-SudOrsay CedexFrance
  2. 2.Museo Nacional de Ciencias Naturales (MNCN-CSIC)MadridSpain
  3. 3.BrønderslevDenmark
  4. 4.Department of Zoology and Laboratory of OrnithologyPalacky UniversityOlomoucCzech Republic
  5. 5.Departamento de Zoología, Facultad de CienciasUniversidad de GranadaGranadaSpain
  6. 6.Arctic CentreUniversity of LaplandRovaniemiFinland
  7. 7.Department of Zoology, Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
  8. 8.Behavioral Ecology Group, Department of Systematics, Zoology and EcologyEötvös Loránd UniversityBudapestHungary
  9. 9.Department of Plant PathologyCorvinus University of BudapestBudapestHungary
  10. 10.Institute of ZoologyPoznań University of Life SciencesPoznanPoland

Personalised recommendations