, Volume 170, Issue 3, pp 745–754 | Cite as

Primary assembly of soil communities: disentangling the effect of dispersal and local environment

  • María IngimarsdóttirEmail author
  • Tancredi Caruso
  • Jörgen Ripa
  • Ólöf Birna Magnúsdóttir
  • Massimo Migliorini
  • Katarina Hedlund
Community ecology - Original research


It has long been recognised that dispersal abilities and environmental factors are important in shaping invertebrate communities, but their relative importance for primary soil community assembly has not yet been disentangled. By studying soil communities along chronosequences on four recently emerged nunataks (ice-free land in glacial areas) in Iceland, we replicated environmental conditions spatially at various geographical distances. This allowed us to determine the underlying factors of primary community assembly with the help of metacommunity theories that predict different levels of dispersal constraints and effects of the local environment. Comparing community assembly of the nunataks with that of non-isolated deglaciated areas indicated that isolation of a few kilometres did not affect the colonisation of the soil invertebrates. When accounting for effects of geographical distances, soil age and plant richness explained a significant part of the variance observed in the distribution of the oribatid mites and collembola communities, respectively. Furthermore, null model analyses revealed less co-occurrence than expected by chance and also convergence in the body size ratio of co-occurring oribatids, which is consistent with species sorting. Geographical distances influenced species composition, indicating that the community is also assembled by dispersal, e.g. mass effect. When all the results are linked together, they demonstrate that local environmental factors are important in structuring the soil community assembly, but are accompanied with effects of dispersal that may “override” the visible effect of the local environment.


Collembola Colonisation Metacommunity Oribatida Variance partitioning 



The study was performed in Vatnajökull National Park. All the people who gave advices on the nunataks and the glacier, borrowed and transported equipment/supplies are thanked, especially Hálfdán and Helgi Björnsson, farmers at Kvísker, Öræfi. Arne Fjellberg assisted in identification of collembolans. Starri Heiðmarsson provided us with the outlines of the nunataks from 2005. We thank Alwyn Williams for his comments on the manuscript. T. Caruso was supported by the Alexander von Humboldt Foundation, EBESA IPY project n1 452, SCAR EBA Programs, and the Italian PNRA (Programma azionale di Ricerche in Antartide) with funding granted to Roberto Bargagli (University of Siena). The work was supported by Kvískerjasjóður, The Crafoord Foundation and Kungliga Fysiografiska Sällskapet i Lund.

Supplementary material

442_2012_2334_MOESM1_ESM.doc (606 kb)
Supplementary material 1 (DOC 611 kb)


  1. Abe T (2006) Colonization of Nishino-Shima island by plants and arthropods 31 years after eruption. Pac Sci 60:355–365CrossRefGoogle Scholar
  2. Åström J, Bengtsson J (2011) Patch size matters more than dispersal distance in a mainland-island metacommunity. Oecologia 167:747–757. doi: 10.1007/s00442-011-2024-y PubMedCrossRefGoogle Scholar
  3. Balogh J, Mahunka S (1983) Primitive oribatids of the Palaearctic region. Elsevier, AmsterdamGoogle Scholar
  4. Bernini F, Castagnoli M, Nannelli R (1995) Arachnida Acari. Calderini, BolognaGoogle Scholar
  5. Birkemoe T, Liengen T (2000) Does collembolan grazing influence nitrogen fixation by cyanobacteria in the high Arctic? Polar Biol 23:589–592. doi: 10.1007/s003000000133 CrossRefGoogle Scholar
  6. Björnsson S (1958) Könnunarferð í Kárasker. Jökull 8:15–17Google Scholar
  7. Björnsson H (2009) Jöklar á Íslandi. Opna, ReykjavíkGoogle Scholar
  8. Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68CrossRefGoogle Scholar
  9. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055CrossRefGoogle Scholar
  10. Caruso T, Taormina M, Migliorini M (2012) Relative role of deterministic and stochastic determinants of soil animal community: a spatially explicit analysis of oribatid mites. J Anim Ecol 81:214–221. doi: 10.1111/j.1365-2656.2011.01886.x PubMedCrossRefGoogle Scholar
  11. Chase JM, Leibold MA (2003) Ecological niches: linking classic and contemporary approaches. University of Chicago Press, ChicagoGoogle Scholar
  12. Cottenie K (2005) Integrating environmental and spatial processes in ecological community dynamics. Ecol Lett 8:1175–1182. doi: 10.1111/j.1461-0248.2005.00820.x PubMedCrossRefGoogle Scholar
  13. Dabski M, Angiel P (2010) Geomorphic implications of the retreat of Breiðamerkurjökull at the southern part of the Skálabjörg ridge, Esjufjöll, Iceland. Jökull 60:185–197Google Scholar
  14. Dayan T, Simberloff D (2005) Ecological and community-wide character displacement: the next generation. Ecol Lett 8:875–894. doi: 10.1111/j.1461-0248.2005.00791.x CrossRefGoogle Scholar
  15. Diamond JM (1975) Assembly of species communities. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Harvard University Press, Cambridge, pp 342–444Google Scholar
  16. Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493CrossRefGoogle Scholar
  17. Edwards JS, Thornton IWB (2001) Colonization of an island volcano, Long Island, Papua New Guinea, and an emergent island, Motmot, in its caldera lake. VI. The pioneer arthropod community of Motmot. J Biogeogr 28:1379–1388CrossRefGoogle Scholar
  18. Einarsson E (1998) Ung og gömul jökulsker í Breiðamerkurjökli. Landnám og framvinda gróðurs. In: Árnason GS, Arnarson BG, Jörundsson EP, Svavarsdóttir G, Torfason Z (eds) Kvískerjabók. Sýslusafn Austur-Skaftafellssýslu, Höfn, pp 222–254Google Scholar
  19. Fjellberg A (1998) The Collembola of Fennoscandia and Denmark. Part 1: Poduromorpha. Brill, LeidenGoogle Scholar
  20. Fjellberg A (2007) The Collembola of Fennoscandia and Denmark. Part II: Entomobryomorpha and Symphypleona. Brill, LeidenCrossRefGoogle Scholar
  21. Gotelli NJ (2000) Null model analysis of species co-occurrence patterns. Ecology 81:2606–2621CrossRefGoogle Scholar
  22. Gotelli NJ, Ellison AM (2004) A primer of ecological statistics. Sinauer, SunderlandGoogle Scholar
  23. Gotelli NJ, Entsminger GL (2010) EcoSim: null models software for ecology, 7th edn. Acquired Intelligence Inc. & Kesey-Bear, JerichoGoogle Scholar
  24. Hågvar S (2010) Primary succession of springtails (Collembola) in a Norwegian glacier foreland. Arct Antarct Alp Res 42:422–429. doi: 10.1657/1938-4246-42.4.422 CrossRefGoogle Scholar
  25. Hågvar S, Solhoy T, Mong CE (2009) Primary succession of soil mites (Acari) in a Norwegian glacier foreland, with emphasis on oribatid species. Arct Antarct Alp Res 41:219–227. doi: 10.1657/1938-4246-41.2.219 CrossRefGoogle Scholar
  26. Hodkinson ID, Coulson SJ, Webb NR (2004) Invertebrate community assembly along proglacial chronosequences in the high Arctic. J Anim Ecol 73:556–568CrossRefGoogle Scholar
  27. Hopkin SF (1997) Biology of the springtails (Insecta: Collembola). Oxford University Press, OxfordGoogle Scholar
  28. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, PrincetonGoogle Scholar
  29. Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of animals? Am Nat 93:145–159CrossRefGoogle Scholar
  30. Kaufmann R, Fuchs M, Gosterxeier N (2002) The soil fauna of an Alpine glacier foreland: colonization and succession. Arct Antarct Alp Res 34:242–250CrossRefGoogle Scholar
  31. Krantz GW, Walter DE (2009) A manual of acarology, 3rd edn. Texas Tech University Press, LubbockGoogle Scholar
  32. Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  33. Leibold MA (1998) Similarity and local co-existence of species in regional biotas. Evol Ecol 12:95–110CrossRefGoogle Scholar
  34. Leibold MA et al (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613. doi: 10.1111/j.1461-0248.2004.00608.x CrossRefGoogle Scholar
  35. Lindo Z, Winchester NN (2009) Spatial and environmental factors contributing to patterns in arboreal and terrestrial oribatid mite diversity across spatial scales. Oecologia 160:817–825. doi: 10.1007/s00442-009-1348-3 PubMedCrossRefGoogle Scholar
  36. Lindroth CH (1965) Oikos. Acta Oecologica Scandinavica. Supplementum 6. Skaftafell, Iceland: a living glacial refugium. Munksgaard, CopenhagenGoogle Scholar
  37. Lindroth CH (1973) Entomologica Scandinavica. Supplementum 5. Surtsey, Iceland: the development of a new fauna, 1963–1970: terrestrial invertebrates. Munksgaard, CopenhagenGoogle Scholar
  38. MacArthur RH, Levins R (1967) Limiting similarity convergence and divergence of coexisting species. Am Nat 101:377–385CrossRefGoogle Scholar
  39. Macfadyen A (1961) Improved funnel-type extractors for soil arthropods. J Anim Ecol 30:171–184CrossRefGoogle Scholar
  40. Magnússon B, Magnússon SH (2000) Vegetation succession on Surtsey, Iceland, during 1990–1998 under the influence of breeding gulls. Surtsey Res 11:9–20Google Scholar
  41. Magnússon B, Magnússon SH, Friðriksson S (2009) Development in plant colonization and succession on Surtsey during 1999–2008. Surtsey Res Prog Rep 12:57–76Google Scholar
  42. Marshall VG, Reeves RM, Norton RA (1987) Catalogue of the Oribatida (Acari) of continental United States and Canada. Mem Entomol Soc Can 139:1–418CrossRefGoogle Scholar
  43. Matthews JA (1992) The ecology of recently deglaciated terrain. A geoecological approach to glacier forelands and primary succession. Cambridge University Press, CambridgeGoogle Scholar
  44. Oksanen J, Kindt R, Legendre P, O’Hara RB (2006) Vegan: Community Ecology Package version 1.8-2Google Scholar
  45. Peres-Neto PR (2004) Patterns in the co-occurrence of fish species in streams: the role of site suitability, morphology and phylogeny versus species interactions. Oecologia 140:352–360. doi: 10.1007/s0042-004-1578-3 PubMedGoogle Scholar
  46. R Development Core Team (2006) R: a language and environment for statistical computing. In: R Foundation for Statistical Computing. Vienna, AustriaGoogle Scholar
  47. Schneider K, Maraun M (2005) Feeding preferences among dark pigmented fungal taxa (“Dematiacea”) indicate limited trophic niche differentiation of oribatid mites (Oribatida, Acari). Pedobiologia 49:61–67. doi: 10.1016/j.pedobi.2004.07.010 CrossRefGoogle Scholar
  48. Schneider K, Christman MC, Fagan WF (2011) The influence of resource subsidies on cave invertebrates: results from an ecosystem-level manipulation experiment. Ecology 92:765–776. doi: 10.1890/10-0157.1 PubMedCrossRefGoogle Scholar
  49. Shmida A, Wilson MV (1985) Biological determinants of species diversity. J Biogeogr 12:1–20CrossRefGoogle Scholar
  50. Siepel H, de Ruiter-Dijkman EM (1993) Feeding guilds of oribatid mites based on their carbohydrase activities. Soil Biol Biochem 25:1491–1497CrossRefGoogle Scholar
  51. Subias LS (2004) Listado sistemático, sinonímico y biogeográfico de los ácaros oribátidos (Acariformes, Oribatida) del mundo (1758–2002). Graellsia Monogr 60(número extraordinario):3–305Google Scholar
  52. Thornton IWB, New TR, McLaren DA, Sudarman HK, Vaughan PJ (1988) Air-borne arthropod fall-out on Anak Krakatau and a possible pre-vegetation pioneer community. Philos Trans R Soc Lond B 322:471–479. doi: 10.1098/rstb.1988.0139 CrossRefGoogle Scholar
  53. Weigmann G (2006) Acari, Actinochaetida. Hornilben (Oribatida). Goecke & Evers, KelternGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • María Ingimarsdóttir
    • 1
    • 2
    Email author
  • Tancredi Caruso
    • 3
  • Jörgen Ripa
    • 1
  • Ólöf Birna Magnúsdóttir
    • 4
  • Massimo Migliorini
    • 5
  • Katarina Hedlund
    • 1
  1. 1.Department of BiologyLund UniversityLundSweden
  2. 2.The Icelandic Institute of Natural HistoryGarðabærIceland
  3. 3.Institut für Biologie, Plant EcologyFreie Universität BerlinBerlinGermany
  4. 4.Institute of BiologyUniversity of IcelandReykjavíkIceland
  5. 5.Department of Evolutionary BiologyUniversity of SienaSienaItaly

Personalised recommendations