Advertisement

Oecologia

, Volume 170, Issue 1, pp 89–99 | Cite as

Genetically based differentiation in growth of multiple non-native plant species along a steep environmental gradient

  • Sylvia HaiderEmail author
  • Christoph Kueffer
  • Peter J. Edwards
  • Jake M. Alexander
Population ecology - Original research

Abstract

A non-native plant species spreading along an environmental gradient may need to adjust its growth to the prevailing conditions that it encounters by a combination of phenotypic plasticity and genetic adaptation. There have been several studies of how non-native species respond to changing environmental conditions along latitudinal gradients, but much less is known about elevational gradients. We conducted a climate chamber experiment to investigate plastic and genetically based growth responses of 13 herbaceous non-native plants along an elevational gradient from 100 to 2,000 m a.s.l. in Tenerife. Conditions in the field ranged from high anthropogenic disturbance but generally favourable temperatures for plant growth in the lower half of the gradient, to low disturbance but much cooler conditions in the upper half. We collected seed from low, mid and high elevations and grew them in climate chambers under the characteristic temperatures at these three elevations. Growth of all species was reduced under lower temperatures along both halves of the gradient. We found consistent genetically based differences in growth over the upper elevational gradient, with plants from high-elevation sites growing more slowly than those from mid-elevation ones, while the pattern in the lower part of the gradient was more mixed. Our data suggest that many non-native plants might respond to climate along elevational gradients by genetically based changes in key traits, especially at higher elevations where low temperatures probably impose a stronger selection pressure. At lower elevations, where anthropogenic influences are greater, higher gene flow and frequent disturbance might favour genotypes with broad ecological amplitudes. Thus the importance of evolutionary processes for invasion success is likely to be context-dependent.

Keywords

Alien Elevational gradient Phenotypic plasticity Plant invasions Rapid evolution 

Notes

Acknowledgments

We would like to thank L. Trepl for helpful comments during the project and H. Dietz who was strongly involved in the initial phase of the project. Comments of three anonymous reviewers helped to improve earlier versions of the manuscript. We are grateful to the Grassland Group, the Chair of Plant Nutrition, the experimental station in Dürnast and the Ecotoxicology Group of the Technische Universität München for providing climate chambers and greenhouses. We thank R. Otto and B. Schreck for collecting seeds and finally we are very grateful to all the people who helped during the experiment. The experiment complies with current German laws. SH was funded by graduate scholarships of Universität Bayern e. V. and the HWP-program of the Technische Universität München.

References

  1. Alexander JM (2010) Genetic differences in the elevational limits of native and introduced Lactuca serriola populations. J Biogeogr 37:1951–1961. doi: 10.1111/j.1365-2699.2010.02335.x Google Scholar
  2. Alexander JM, Edwards PJ (2010) Limits to the niche and range margins of alien species. Oikos 119:1377–1386. doi: 10.1111/j.1600-0706.2009.17977.x CrossRefGoogle Scholar
  3. Alexander JM, Edwards PJ, Poll M, Parks CG, Dietz H (2009) Establishment of parallel altitudinal clines in traits of native and introduced forbs. Ecology 90:612–622. doi: 10.1890/08-0453.1 PubMedCrossRefGoogle Scholar
  4. Alexander JM, Kueffer C, Daehler CC, Edwards PJ, Pauchard A, Seipel T, MIREN Consortium (2011) Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proc Natl Acad Sci USA 108:656–661. doi: 10.1073/pnas.1013136108 PubMedCrossRefGoogle Scholar
  5. Allan E, Pannell JR (2009) Rapid divergence in physiological and life-history traits between northern and southern populations of the British introduced neo-species, Senecio squalidus. Oikos 118:1053–1061. doi: 10.1111/j.1600-0706.2009.17135.x CrossRefGoogle Scholar
  6. Atkins KE, Travis JMJ (2010) Local adaptation and the evolution of species’ ranges under climate change. J Theor Biol 266:449–457. doi: 10.1016/j.jtbi.2010.07.014 PubMedCrossRefGoogle Scholar
  7. Barrett SCH, Colautti RI, Eckert CG (2008) Plant reproductive systems and evolution during biological invasion. Mol Ecol 17:373–383. doi: 10.1111/j.1365-294X.2007.03503.x PubMedCrossRefGoogle Scholar
  8. Bastlová D, Bastl M, Čížková H, Kvĕt J (2006) Plasticity of Lythrum salicaria and Phragmites australis growth characteristics across a European geographical gradient. Hydrobiologia 570:237–242. doi: 10.1007/s10750-006-0186-0 CrossRefGoogle Scholar
  9. Becker T, Dietz H, Billeter R, Buschmann H, Edwards PJ (2005) Altitudinal distribution of alien plant species in the Swiss Alps. Perspect Plant Ecol Evol Syst 7:173–183. doi: 10.1016/j.ppees.2005.09.006 CrossRefGoogle Scholar
  10. Bischoff A, Trémulot S (2011) Differentiation and adaptation in Brassica nigra populations: interactions with related herbivores. Oecologia 165:971–981. doi: 10.1007/s00442-010-1798-7 PubMedCrossRefGoogle Scholar
  11. Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144:1–11. doi: 10.1007/s00442-005-0070-z PubMedCrossRefGoogle Scholar
  12. Bossdorf O, Lipowsky A, Prati D (2008) Selection of preadapted populations allowed Senecio inaequidens to invade central Europe. Divers Distrib 14:676–685. doi: 10.1111/j.1472-4642.2008.00471.x CrossRefGoogle Scholar
  13. Colautti RI, Maron JL, Barrett SCH (2009) Common garden comparisons of native and introduced plant populations: latitudinal clines can obscure evolutionary inferences. Evol Appl 2:187–199. doi: 10.1111/j.1752-4571.2008.00053.x CrossRefGoogle Scholar
  14. Crispo E (2008) Modifying effects of phenotypic plasticity on interactions among natural selection, adaptation and gene flow. J Evol Biol 21:1460–1469. doi: 10.1111/j.1420-9101.2008.01592.x PubMedCrossRefGoogle Scholar
  15. Dietz H, Edwards PJ (2006) Recognition that causal processes change during plant invasion helps explain conflicts in evidence. Ecology 87:1359–1367. doi: 10.1890/0012-9658(2006)87[1359:RTCPCD]2.0.CO;2 PubMedCrossRefGoogle Scholar
  16. Endler JA (1977) Geographic variation, speciation, and clines. Princeton University Press, PrincetonGoogle Scholar
  17. Fernández-Palacios JM (1992) Climatic responses of plant species on Tenerife, The Canary Islands. J Veg Sci 3:595–602. doi: 10.2307/3235826 CrossRefGoogle Scholar
  18. Fernández-Palacios JM, de Nicolás JP (1995) Altitudinal pattern of vegetation variation on Tenerife. J Veg Sci 6:183–190. doi: 10.2307/3236213 CrossRefGoogle Scholar
  19. Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21:394–407. doi: 10.1111/j.1365-2435.2007.01283.x CrossRefGoogle Scholar
  20. Gilchrist GW, Lee CE (2007) All stressed out and nowhere to go: does evolvability limit adaptation in invasive species? Genetica 129:127–132. doi: 10.1007/s10709-006-9009-5 PubMedCrossRefGoogle Scholar
  21. Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties, 2nd edn. Wiley, ChichesterGoogle Scholar
  22. Grime JP, Hunt R (1975) Relative growth-rate: its range and adaptive significance in a local flora. J Ecol 63:393–422CrossRefGoogle Scholar
  23. Haider S, Alexander J, Dietz H, Trepl L, Edwards PJ, Kueffer C (2010) The role of bioclimatic origin, residence time and habitat context in shaping non-native plant distributions along an altitudinal gradient. Biol Invasions 12:4003–4018. doi: 10.1007/s10530-010-9815-7 CrossRefGoogle Scholar
  24. Haider S, Alexander JM, Kueffer C (2012) Elevational distribution limits of non-native species: combining observational and experimental evidence. Plant Ecol Divers. doi: 10.1080/17550874.2011.637973
  25. Huey RB, Gilchrist GW, Carlson ML, Berrigan D, Serra L (2000) Rapid evolution of a geographic cline in size in an introduced fly. Science 287:308–309. doi: 10.1126/science.287.5451.308 PubMedCrossRefGoogle Scholar
  26. Jia X, Pan XY, Sosa A, Li B, Chen JK (2010) Differentiation in growth and biomass allocation among three native Alternanthera philoxeroides varieties from Argentina. Plant Species Biol 25:85–92. doi: 10.1111/j.1442-1984.2010.00271.x CrossRefGoogle Scholar
  27. Kawecki TJ (2008) Adaptation to marginal habitats. Annu Rev Ecol Evol Syst 39:321–342. doi: 10.1146/annurev.ecolsys.38.091206.095622 CrossRefGoogle Scholar
  28. Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241. doi: 10.1111/j.1461-0248.2004.00684.x CrossRefGoogle Scholar
  29. Kollmann J, Bañuelos MJ (2004) Latitudinal trends in growth and phenology of the invasive alien plant Impatiens glandulifera (Balsaminaceae). Divers Distrib 10:377–385. doi: 10.1111/j.1366-9516.2004.00126.x CrossRefGoogle Scholar
  30. Lacey EP, Herr D (2000) Parental effects in Plantago lanceolata L. III. Measuring parental temperature effects in the field. Evolution 54:1207–1217. doi: 10.1111/j.0014-3820.2000.tb00555.x PubMedGoogle Scholar
  31. Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391. doi: 10.1016/S0169-5347(02)02554-5 CrossRefGoogle Scholar
  32. Lee CE, Gelembiuk GW (2008) Evolutionary origins of invasive populations. Evol Appl 1:427–448. doi: 10.1111/j.1752-4571.2008.00039.x CrossRefGoogle Scholar
  33. Leger EA, Espeland EK, Merrill KR, Meyers SE (2009) Genetic variation and local adaptation at a cheatgrass (Bromus tectorum) invasion edge in western Nevada. Mol Ecol 18:4366–4379. doi: 10.1111/j.1365-294X.2009.04357.x PubMedCrossRefGoogle Scholar
  34. Levin DA (2003) Ecological speciation: lessons from invasive species. Syst Bot 28:643–650. doi: 10.1043/02-70.1 Google Scholar
  35. Li B, Suzuki JI, Hara T (1998) Latitudinal variation in plant size and relative growth rate in Arabidopsis thaliana. Oecologia 115:293–301. doi: 10.1007/s004420050519 CrossRefGoogle Scholar
  36. McDougall KL, Alexander JM, Haider S, Pauchard A, Walsh NG, Kueffer C (2011) Alien flora of mountains: global comparisons for the development of local preventive measures against plant invasions. Divers Distrib 17:103–111. doi: 10.1111/j.1472-4642.2010.00713.x CrossRefGoogle Scholar
  37. Meyers LA, Ancel FD, Lachmann M (2005) Evolution of genetic potential. PLoS Comput Biol 1:236–243. doi: 10.1371/journal.pcbi.0010032 PubMedGoogle Scholar
  38. Mitrakos K (1980) A theory for Mediterranean plant life. Acta Oecol Oecol Plant 1:245–252Google Scholar
  39. Montague JL, Barrett SCH, Eckert CG (2008) Re-establishment of clinal variation in flowering time among introduced populations of purple loosestrife (Lythrum salicaria, Lythraceae). J Evol Biol 21:234–245. doi: 10.1111/j.1420-9101.2007.01456.x PubMedGoogle Scholar
  40. Montesinos-Navarro A, Wig J, Pico FX, Tonsor SJ (2010) Arabidopsis thaliana populations show clinal variation in a climatic gradient associated with altitude. New Phytol 189:282–294. doi: 10.1111/j.1469-8137.2010.03479.x PubMedCrossRefGoogle Scholar
  41. Monty A, Mahy G (2009) Clinal differentiation during invasion: Senecio inaequidens (Asteraceae) along altitudinal gradients in Europe. Oecologia 159:305–315. doi: 10.1007/s00442-008-1228-2 PubMedCrossRefGoogle Scholar
  42. Monty A, Lebeau J, Meerts P, Mahy G (2009) An explicit test for the contribution of environmental maternal effects to rapid clinal differentiation in an invasive plant. J Evol Biol 22:917–926. doi: 10.1111/j.1420-9101.2009.01728.x PubMedCrossRefGoogle Scholar
  43. Olsson K, Ågren J (2002) Latitudinal population differentiation in phenology, life history and flower morphology in the perennial herb Lythrum salicaria. J Evol Biol 15:983–996. doi: 10.1046/j.1420-9101.2002.00457.x CrossRefGoogle Scholar
  44. Parker IM, Rodriguez J, Loik ME (2003) An evolutionary approach to understanding the biology of invasions: local adaptation and general-purpose genotypes in the weed Verbascum thapsus. Conserv Biol 17:59–72. doi: 10.1046/j.1523-1739.2003.02019.x CrossRefGoogle Scholar
  45. Pauchard A, Kueffer C, Dietz H, Daehler CC, Alexander JM, Edwards PJ, Arévalo JR, Cavieres LA, Guisan A, Haider S, Jakobs G, McDougall K, Millar CI, Naylor BJ, Parks CG, Rew LJ, Seipel T (2009) Ain’t no mountain high enough: plant invasions reaching new elevations. Front Ecol Environ 7:479–486. doi: 10.1890/080072 CrossRefGoogle Scholar
  46. Peterson DL, Schreiner EG, Buckingham NM (1997) Gradients, vegetation and climate: spatial and temporal dynamics in the Olympic mountains, USA. Glob Ecol Biogeogr Lett 6:7–17CrossRefGoogle Scholar
  47. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  48. Reinartz JA (1984) Life-history variation of common mullein (Verbascum thapsus). I. Latitudinal differences in population dynamics and timing of reproduction. J Ecol 72:897–912CrossRefGoogle Scholar
  49. Reznick DN, Ghalambor CK (2001) The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112:183–198. doi: 10.1023/A:1013352109042 PubMedCrossRefGoogle Scholar
  50. Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006) Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol Lett 9:981–993. doi: 10.1111/j.1461-0248.2006.00950.x PubMedCrossRefGoogle Scholar
  51. Richardson DM, Pyšek P (2006) Plant invasions: merging the concepts of species invasiveness and community invasibility. Progr Phys Geogr 30:409–431. doi: 10.1191/0309133306pp490pr CrossRefGoogle Scholar
  52. Roach DA, Wulff RD (1987) Maternal effects in plants. Annu Rev Ecol Syst 18:209–235. doi: 10.1146/annurev.es.18.110187.001233 CrossRefGoogle Scholar
  53. Roy S, Simon J-P, Lapointe F-J (2000) Determination of the origin of the cold-adapted populations of barnyard grass (Echinochloa crus-galli) in eastern North America: a total-evidence approach using RAPD DNA and DNA sequences. Can J Bot 78:1505–1513. doi: 10.1139/cjb-78-12-1505 Google Scholar
  54. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332. doi: 10.1146/annurev.ecolsys.32.081501.114037 CrossRefGoogle Scholar
  55. Schierenbeck KA, Ellstrand NC (2009) Hybridization and the evolution of invasiveness in plants and other organisms. Biol Invasions 11:1093–1105. doi: 10.1007/s10530-008-9388-x CrossRefGoogle Scholar
  56. Schmitt J, Niles J, Wulff RD (1992) Norms of reaction of seed traits to maternal environments in Plantago lanceolata. Am Nat 139:451–466. doi: 10.1086/285338 CrossRefGoogle Scholar
  57. Scott JW, Meyer SE, Merrill KR, Anderson VJ (2010) Local population differentiation in Bromus tectorum L. in relation to habitat-specific selection regimes. Evol Ecol 24:1061–1080. doi: 10.1007/s10682-010-9352-y CrossRefGoogle Scholar
  58. Sexton JP, McKay JK, Sala A (2002) Plasticity and genetic diversity may allow saltceder to invade cold climates in North America. Ecol Appl 12:1652–1660. doi: 10.1890/1051-0761(2002)012[1652:PAGDMA]2.0.CO;2 CrossRefGoogle Scholar
  59. Stanton ML, Roy BA, Thiede DA (2000) Evolution in stressful environments. I. Phenotypic variability, phenotypic selection, and response to selection in five distinct environmental stresses. Evolution 54:93–111. doi: 10.1554/0014-3820(2000)054[0093:EISEIP]2.0.CO;2 PubMedGoogle Scholar
  60. Trtikova M, Edwards PJ, Güsewell S (2010) No adaptation to altitude in the invasive plant Erigeron annuus in the Swiss Alps. Ecography 33:556–564. doi: 10.1111/j.1600-0587.2009.05708.x Google Scholar
  61. Walther G-R, Roques A, Hulme PE, Sykes MT, Pyšek P, Kühn I, Zobel M, Bacher S, Botta-Dukát Z, Bugmann H, Czúcz B, Dauber J, Hickler T, Jarošík V, Kenis M, Klotz S, Minchin D, Moora M, Nentwig W, Ott J, Panov VE, Reineking B, Robinet C, Semenchenko V, Solarz W, Thuiller W, Vilà M, Vohland K, Settele J (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24:686–693. doi: 10.1016/j.tree.2009.06.008 PubMedCrossRefGoogle Scholar
  62. Weber E, Schmid B (1998) Latitudinal population differentiation in two species of Solidago (Asteraceae) introduced into Europe. Am J Bot 85:1110–1121PubMedCrossRefGoogle Scholar
  63. Williams JL, Auge H, Maron JL (2008) Different gardens, different results: native and introduced populations exhibit contrasting phenotypes across common gardens. Oecologia 157:239–248. doi: 10.1007/s00442-008-1075-1 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Sylvia Haider
    • 1
    Email author
  • Christoph Kueffer
    • 2
  • Peter J. Edwards
    • 2
  • Jake M. Alexander
    • 2
  1. 1.Department of Ecology and Ecosystem Management, Restoration EcologyTechnische Universität MünchenFreisingGermany
  2. 2.Plant Ecology Group, Institute of Integrative BiologyETH ZurichZurichSwitzerland

Personalised recommendations