, Volume 168, Issue 3, pp 773–783 | Cite as

Linking landscape history and dispersal traits in grassland plant communities

  • Oliver Purschke
  • Martin T. Sykes
  • Triin Reitalu
  • Peter Poschlod
  • Honor C. Prentice
Community ecology - Methods Paper


Dispersal limitation and long-term persistence are known to delay plant species’ responses to habitat fragmentation, but it is still unclear to what extent landscape history may explain the distribution of dispersal traits in present-day plant communities. We used quantitative data on long-distance seed dispersal potential by wind and grazing cattle (epi- and endozoochory), and on persistence (adult plant longevity and seed bank persistence) to quantify the linkages between dispersal and persistence traits in grassland plant communities and current and past landscape configurations. The long-distance dispersal potential of present-day communities was positively associated with the amounts of grassland in the historical (1835, 1938) landscape, and with a long continuity of grazing management—but was not associated with the properties of the current landscape. The study emphasises the role of history as a determinant of the dispersal potential of present-day grassland plant communities. The importance of long-distance dispersal processes has declined in the increasingly fragmented modern landscape, and long-term persistent species are expected to play a more dominant role in grassland communities in the future. However, even within highly fragmented landscapes, long-distance dispersed species may persist locally—delaying the repayment of the extinction debt.


Life-history traits Persistence Fourth-corner Habitat fragmentation Land-use history 

Supplementary material

442_2011_2142_MOESM1_ESM.doc (11 kb)
Supplementary material 1 (DOC 11 kb)


  1. Adriaens D, Honnay O, Hermy M (2006) No evidence of a plant extinction debt in highly fragmented calcareous grasslands in Belgium. Biol Conserv 133:212–224CrossRefGoogle Scholar
  2. Bekker RM, Bakker JP, Grandin U, Kalamees R, Milberg P, Poschlod P, Thompson K, Willems JH (1998) Seed size, shape and vertical distribution in the soil: indicators of seed longevity. Funct Ecol 12:834–842CrossRefGoogle Scholar
  3. Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632PubMedCrossRefGoogle Scholar
  4. Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68CrossRefGoogle Scholar
  5. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055CrossRefGoogle Scholar
  6. Bruun HH, Poschlod P (2006) Why are small seeds dispersed through animal guts: large numbers or seed size per se? Oikos 113:402–411CrossRefGoogle Scholar
  7. Bullock JM, Clear Hill B, Silvertown J, Sutton M (1995) Gap colonization as a source of grassland community change: effects of gap size and grazing on the rate and mode of colonization by different species. Oikos 72:273–282CrossRefGoogle Scholar
  8. Bullock JM, Moy IL, Pywell RF, Coulson SJ, Nolan AM, Caswell H (2002) Plant dispersal and colonization processes at local and landscape scales. In: Bullock JM, Kenward RE, Hails RS (eds) Dispersal ecology. Blackwell, Oxford, pp 279–302Google Scholar
  9. Cain ML, Milligan BG, Strand AE (2000) Long-distance seed dispersal in plant populations. Am J Bot 87:1217–1227PubMedCrossRefGoogle Scholar
  10. Cousins SAO, Aggemyr E (2008) The influence of field shape, area and surrounding landscape on plant species richness in grazed ex-fields. Biol Conserv 141:126–135CrossRefGoogle Scholar
  11. de Blois S, Domon G, Bouchard A (2001) Environmental, historical, and contextual determinants of vegetation cover: a landscape perspective. Landsc Ecol 16:421–436CrossRefGoogle Scholar
  12. Dray S, Legendre P (2008) Testing the species traits-environment relationships: the fourth-corner problem revisited. Ecology 89:3400–3412PubMedCrossRefGoogle Scholar
  13. Dupré C, Ehrlén J (2002) Habitat configuration, species traits and plant distributions. J Ecol 90:796–805CrossRefGoogle Scholar
  14. Eriksson O (1995) Seedling recruitment in deciduous forest herbs—the effects of litter, soil chemistry and seed bank. Flora 190:65–70Google Scholar
  15. Eriksson O, Cousins SAO, Bruun HH (2002) Land-use history and fragmentation of traditionally managed grasslands in Scandinavia. J Veg Sci 13:743–748CrossRefGoogle Scholar
  16. Fischer SF, Poschlod P, Beinlich B (1996) Experimental studies on the dispersal of plants and animals on sheep in calcareous grasslands. J Appl Ecol 33:1206–1222CrossRefGoogle Scholar
  17. Grubb PJ (1977) The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol Rev 52:107–145CrossRefGoogle Scholar
  18. Helm A, Hanski I, Pärtel M (2006) Slow response of plant species richness to habitat loss and fragmentation. Ecol Lett 9:72–77PubMedGoogle Scholar
  19. Hérault B, Honnay O (2005) The relative importance of local, regional and historical factors determining the distribution of plants in fragmented riverine forests: an emergent group approach. J Biogeogr 32:2069–2081CrossRefGoogle Scholar
  20. Herben T, Münzbergová Z, Mildén M, Ehrlén J, Cousins SAO, Eriksson O (2006) Long-term spatial dynamics of Succisa pratensis in a changing rural landscape: linking dynamical modelling with historical maps. J Ecol 94:131–143CrossRefGoogle Scholar
  21. Johansson LJ (2008) Semi-Natural Grasslands: Landscape, History and Plant Species Diversity. PhD dissertation, Lund University, SwedenGoogle Scholar
  22. Johansson LJ, Hall K, Prentice HC, Ihse M, Reitalu T, Sykes MT, Kindström M (2008) Semi- natural grassland continuity, long-term land-use change and plant species richness in an agricultural landscape on Öland, Sweden. Landsc Urban Plan 84:200–211CrossRefGoogle Scholar
  23. Johnson WC (1988) Estimating dispersibility of Acer, Fraxinus and Tilia in fragmented landscapes from patterns of seedling establishment. Landsc Ecol 1:175–187CrossRefGoogle Scholar
  24. Jonsen ID, Fahrig L (1997) Response of generalist and specialist insect herbivores to landscape spatial structure. Landsc Ecol 12:185–197CrossRefGoogle Scholar
  25. Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, van Groenendael JM, Klimes L, Klimesová J, Klotz S, Rusch GM, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Dannemann A, Endels P, Götzenberger L, Hodgson JG, Jackel A-K, Kühn I, Kunzmann D, Ozinga WA, Römermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Peco B (2008) The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274CrossRefGoogle Scholar
  26. Krauss J, Klein A-M, Steffan-Dewenter I, Tscharntke T (2004) Effects of habitat area, isolation, and landscape diversity on plant species richness of calcareous grasslands. Biodivers Conserv 13:1427–1439CrossRefGoogle Scholar
  27. Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Partel M, Pino J, Roda F, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571PubMedCrossRefGoogle Scholar
  28. Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556CrossRefGoogle Scholar
  29. Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  30. Legendre P, Galzin R, Harmelin-Vivien ML (1997) Relating behavior to habitat: solutions to the fourth-corner problem. Ecology 78:547–562Google Scholar
  31. Lindborg R (2007) Evaluating the distribution of plant life-history traits in relation to current and historical landscape configurations. J Ecol 95:555–564CrossRefGoogle Scholar
  32. McIntyre S, Lavorel S (2001) Livestock grazing in subtropical pastures: steps in the analysis of attribute response and plant functional types. J Ecol 89:209–226CrossRefGoogle Scholar
  33. Nathan R (2006) Long-distance dispersal of plants. Science 313:786–788PubMedCrossRefGoogle Scholar
  34. Noy-Meir I, Gutman M, Kaplan Y (1989) Responses of Mediterranean grassland plants to grazing and protection. J Ecol 77:290–310CrossRefGoogle Scholar
  35. Ozinga WA, Bekker RM, Schaminée JJ, van Groenendael J (2004) Dispersal potential in plant communities depends on environmental conditions. J Ecol 92:767–777CrossRefGoogle Scholar
  36. Ozinga WA, Römermann C, Bekker RM, Prinzing A, Tamis WLM, Schaminée JHJ, Hennekens SM, Thompson K, Poschlod P, Kleyer M, Bakker JP, van Groenendael JM (2009) Dispersal failure contributes to plant losses in NW Europe. Ecol Lett 12:66–74PubMedCrossRefGoogle Scholar
  37. Pacala SW, Rees M (1998) Models suggesting field experiments to test two hypotheses explaining successional diversity. Am Nat 152:729–737PubMedCrossRefGoogle Scholar
  38. Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625PubMedCrossRefGoogle Scholar
  39. Perry JN, Gonzalez-Andujar JL (1993) Dispersal in a metapopulation neighbourhood model of an annual plant with a seedbank. J Ecol 81:453–463CrossRefGoogle Scholar
  40. Peterken GF, Game M (1984) Historical factors affecting the number and distribution of vascular plant species in the woodlands of central Lincolnshire. J Ecol 72:155–182CrossRefGoogle Scholar
  41. Pimm SL, Jones HL, Diamond J (1988) On the risk of extinction. Am Nat 132:757–785CrossRefGoogle Scholar
  42. Poschlod P, Bonn S (1998) Changing dispersal processes in the central European landscape since the last ice age: an explanation for the actual decrease of plant species richness in different habitats? Acta Bot Neerl 47:27–44Google Scholar
  43. Poschlod P, Kleyer M, Jackel A-K, Dannemann A, Tackenberg O (2003) BIOPOP—a database of plant traits and internet application for nature conservation. Folia Geobot 38:263–271CrossRefGoogle Scholar
  44. Poschlod P, Tackenberg O, Bonn S (2005) Plant dispersal potential and its relation to species frequency and coexistence. In: van der Maarel E (ed) Vegetation ecology. Blackwell, Oxford, pp 147–171Google Scholar
  45. Poschlod P, Hoffmann J, Bernhardt-Römermann M (2011) Effect of grassland management on population structure of Helianthemum nummularium and Lotus corniculatus. Preslia 83:421–435Google Scholar
  46. Prentice HC, Lönn M, Rosquist G, Ihse M, Kindström M (2006) Gene diversity in a fragmented population of Briza media: grassland continuity in a landscape context. J Ecol 94:87–97CrossRefGoogle Scholar
  47. Prentice HC, Jonsson BO, Sykes MT, Ihse M, Kindström M (2007) Fragmented grasslands on the Baltic island of Öland: plant community composition and land-use history. Acta Phytogeogr Suec 88:83–94Google Scholar
  48. Primack RB, Miao SL (1992) Dispersal can limit local plant distribution. Conserv Biol 6:513–519CrossRefGoogle Scholar
  49. R Development Core Team (2010) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  50. Reitalu T, Prentice HC, Sykes MT, Lönn M, Johansson LJ, Hall K (2008) Plant species segregation on different spatial scales in semi-natural grasslands. J Veg Sci 19:407–416CrossRefGoogle Scholar
  51. Reitalu T, Sykes MT, Johansson LJ, Lönn M, Hall K, Vandewalle M, Prentice HC (2009) Small-scale plant species richness and evenness in semi-natural grasslands respond differently to habitat fragmentation. Biol Conserv 142:899–908CrossRefGoogle Scholar
  52. Reitalu T, Purschke O, Johansson LJ, Hall K, Sykes MT, Prentice HC (2011) Responses of grassland species richness to local and landscape factors depend on spatial scale and habitat specialisation. J Veg Sci (in press)Google Scholar
  53. Rusch G, Fernández-Palacios JM (1995) The influence of spatial heterogeneity on regeneration by seed in a limestone grassland. J Veg Sci 6:417–426CrossRefGoogle Scholar
  54. Römermann C, Tackenberg O, Poschlod P (2005) How to predict attachment potential of seeds to sheep and cattle coat from simple morphological seed traits. Oikos 110:219–230CrossRefGoogle Scholar
  55. Saatkamp A, Affre L, Dutoit T, Poschlod P (2009) The seed bank longevity index revisited: limited reliability evident from a burial experiment and database analyses. Ann Bot Lond 104:715–724CrossRefGoogle Scholar
  56. Schupp EW, Jordano P, Gómez JM (2010) Seed dispersal effectiveness revisited: a conceptual review. New Phytol 188:333–353PubMedCrossRefGoogle Scholar
  57. Stöcklin J, Fischer M (1999) Plants with longer-lived seeds have lower local extinction rates in grassland remnants 1950–1985. Oecologia 120:539–543CrossRefGoogle Scholar
  58. Tackenberg O, Poschlod P, Bonn S (2003) Assessment of wind dispersal potential in plant species. Ecol Monogr 73:191–205CrossRefGoogle Scholar
  59. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148PubMedCrossRefGoogle Scholar
  60. Thompson K, Bakker J, Bekker R (1997) The soil seed banks of North West Europe: methodology density and longevity. Cambridge University Press, CambridgeGoogle Scholar
  61. Tilman D (1994) Competition and biodiversity in spatially structured habitats. Ecology 75:2–16CrossRefGoogle Scholar
  62. Verheyen K, Hermy M (2001) The relative importance of dispersal limitation of vascular plants in secondary forest succession in Muizen Forest, Belgium. J Ecol 89:829–840CrossRefGoogle Scholar
  63. Wiegand T, Revilla E, Moloney KA (2005) Effects of habitat loss and fragmentation on population dynamics. Conserv Biol 19:108–121CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Oliver Purschke
    • 1
    • 2
  • Martin T. Sykes
    • 1
  • Triin Reitalu
    • 1
    • 2
    • 3
  • Peter Poschlod
    • 4
  • Honor C. Prentice
    • 2
  1. 1.Department of Earth and Ecosystem SciencesLund UniversityLundSweden
  2. 2.Department of BiologyLund UniversityLundSweden
  3. 3.Institute of GeologyTallinn University of TechnologyTallinnEstonia
  4. 4.Faculty of BiologyUniversity of RegensburgRegensburgGermany

Personalised recommendations