, Volume 168, Issue 3, pp 807–818 | Cite as

Terrestrial subsidies to lake food webs: an experimental approach

  • Pia Bartels
  • Julien Cucherousset
  • Cristian Gudasz
  • Mats Jansson
  • Jan Karlsson
  • Lennart Persson
  • Katrin Premke
  • Anja Rubach
  • Kristin Steger
  • Lars J. Tranvik
  • Peter Eklöv
Ecosystem ecology - Original Paper


Cross-ecosystem movements of material and energy are ubiquitous. Aquatic ecosystems typically receive material that also includes organic matter from the surrounding catchment. Terrestrial-derived (allochthonous) organic matter can enter aquatic ecosystems in dissolved or particulate form. Several studies have highlighted the importance of dissolved organic carbon to aquatic consumers, but less is known about allochthonous particulate organic carbon (POC). Similarly, most studies showing the effects of allochthonous organic carbon (OC) on aquatic consumers have investigated pelagic habitats; the effects of allochthonous OC on benthic communities are less well studied. Allochthonous inputs might further decrease primary production through light reduction, thereby potentially affecting autotrophic resource availability to consumers. Here, an enclosure experiment was carried out to test the importance of POC input and light availability on the resource use in a benthic food web of a clear-water lake. Corn starch (a C4 plant) was used as a POC source due to its insoluble nature and its distinct carbon stable isotope value (δ13C). The starch carbon was closely dispersed over the bottom of the enclosures to study the fate of a POC source exclusively available to sediment biota. The addition of starch carbon resulted in a clear shift in the isotopic signature of surface-dwelling herbivorous and predatory invertebrates. Although the starch carbon was added solely to the sediment surface, the carbon originating from the starch reached zooplankton. We suggest that allochthonous POC can subsidize benthic food webs directly and can be further transferred to pelagic systems, thereby highlighting the importance of benthic pathways for pelagic habitats.


Allochthonous Cross-ecosystem Autochthonous Aquatic-terrestrial linkage Benthic 


  1. Ask J, Karlsson J, Persson L, Ask P, Bystrom P, Jansson M (2009a) Terrestrial organic matter and light penetration: effects on bacterial and primary production in lakes. Limnol Oceanogr 54:2034–2040CrossRefGoogle Scholar
  2. Ask J, Karlsson J, Persson L, Ask P, Bystrom P, Jansson M (2009b) Whole-lake estimates of carbon flux through algae and bacteria in benthic and pelagic habitats of clear-water lakes. Ecology 90:1923–1932PubMedCrossRefGoogle Scholar
  3. Baumgärtner D, Rothhaupt KO (2003) Predictive length-dry mass regressions for freshwater invertebrates in a pre-alpine lake littoral. Int Rev Hydrobiol 88:453–463CrossRefGoogle Scholar
  4. Blomqvist P, Jansson M, Drakare S, Bergstrom AK, Brydsten L (2001) Effects of additions of DOC on pelagic biota in a clearwater system: results from a whole lake experiment in northern Sweden. Microb Ecol 42:383–394PubMedCrossRefGoogle Scholar
  5. Botrell HH, Duncan A, Gliwicz ZM, Grygierek E, Herzig A, Hillbricht-Ilkowska A, Kurasawa H, Larsson P, Weglenska T (1976) A review of some problems in zooplankton production studies. Norwegian J Zool 24:419–456Google Scholar
  6. Brett MT, Kainz MJ, Taipale SJ, Seshan H (2009) Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. Proc Natl Acad Sci USA 106:21197–21201PubMedCrossRefGoogle Scholar
  7. Caraco N, Bauer JE, Cole JJ, Petsch S, Raymond P (2010) Millennial-aged organic carbon subsidies to a modern river food web. Ecology 91:2385–2393PubMedCrossRefGoogle Scholar
  8. Carpenter SR, Cole JJ, Kitchell JF, Pace ML (1998) Impact of dissolved organic carbon, phosphorus, and grazing on phytoplankton biomass and production in experimental lakes. Limnol Oceanogr 43:73–80CrossRefGoogle Scholar
  9. Carpenter SR, Cole JJ, Pace ML, Van de Bogert M, Bade DL, Bastviken D, Gille CM, Hodgson JR, Kitchell JF, Kritzberg ES (2005) Ecosystem subsidies: terrestrial support of aquatic food webs from C-13 addition to contrasting lakes. Ecology 86:2737–2750CrossRefGoogle Scholar
  10. Cole JJ, Caraco NF, Likens GE (1990) Short-range atmospheric transport-a significant source of phosphorus to an oligotrophic lake. Limnol Oceanogr 35:1230–1237CrossRefGoogle Scholar
  11. Cole JJ, Carpenter SR, Kitchell JF, Pace ML (2002) Pathways of organic carbon utilization in small lakes: results from a whole-lake C-13 addition and coupled model. Limnol Oceanogr 47:1664–1675CrossRefGoogle Scholar
  12. Cole JJ, Carpenter SR, Pace ML, Van de Bogert MC, Kitchell JL, Hodgson JR (2006) Differential support of lake food webs by three types of terrestrial organic carbon. Ecol Lett 9:558–568PubMedCrossRefGoogle Scholar
  13. Cole JJ, Carpenter SR, Kitchell JF, Pace ML, Solomon CT, Weidel B (2011) Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen. Proc Natl Acad Sci USA 108:1975–1980PubMedCrossRefGoogle Scholar
  14. DeNiro MJ, Epstein S (1977) Mechanism of carbon isotope fractionation associated with lipid-synthesis. Science 197:261–263PubMedCrossRefGoogle Scholar
  15. Dhital S, Shrestha AK, Gidley MJ (2010) Relationship between granule size and in vitro digestibility of maize and potato starches. Carbohydr Polym 82:480–488CrossRefGoogle Scholar
  16. Ducklow HW, Purdie DA, Williams PJL, Davies JM (1986) Bacterioplankton—a sink for carbon in a coastal marine plankton community. Science 232:865–867PubMedCrossRefGoogle Scholar
  17. France RL (1996) Stable isotopic survey of the role of macrophytes in the carbon flow of aquatic foodwebs. Vegetatio 124:67–72CrossRefGoogle Scholar
  18. Francis TB, Schindler DE, Holtgrieve GW, Larson ER, Scheuerell MD, Semmens BX, Ward EJ (2011) Habitat structure determines resource use by zooplankton in temperate lakes. Ecol Lett 14:364–372PubMedCrossRefGoogle Scholar
  19. Grey J, Jones RI, Sleep D (2000) Stable isotope analysis of the origins of zooplankton carbon in lakes of differing trophic state. Oecologia 123:232–240CrossRefGoogle Scholar
  20. Grey J, Jones RI, Sleep D (2001) Seasonal changes in the importance of the source of organic matter to the diet of zooplankton in Loch Ness, as indicated by stable isotope analysis. Limnol Oceanogr 46:505–513CrossRefGoogle Scholar
  21. Hansson LA, Tranvik LJ (2003) Food webs in sub-Antarctic lakes: a stable isotope approach. Polar Biol 26:783–788CrossRefGoogle Scholar
  22. Hecky RE, Hesslein RH (1995) Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. J N Am Benthol Soc 14:631–653CrossRefGoogle Scholar
  23. Hessen D, Nygaard K (1992) Bacterial transfer of methane and detritus: implications for the pelagic carbon budget and gaseous state. Arch Hydrobiol 37:139–148Google Scholar
  24. Hoch MP, Fogel ML, Kirchman DL (1994) Isotope fractionation during ammonium uptake by marine microbial assemblages. Geomicrobiol J 12:113–127CrossRefGoogle Scholar
  25. Jansson M, Persson L, De Roos AM, Jones RI, Tranvik LJ (2007) Terrestrial carbon and intraspecific size-variation shape lake ecosystems. Trends Ecol Evol 22:316–322PubMedCrossRefGoogle Scholar
  26. Johnston TA, Cunjak RA (1999) Dry mass-length relationships for benthic insects: a review with new data from Catamaran Brook, New Brunswick, Canada. Freshw Biol 41:653–674CrossRefGoogle Scholar
  27. Jones RI (1992) The influence of humic substances on lacustrine planktonic food chains. Hydrobiologia 229:73–91CrossRefGoogle Scholar
  28. Karlsson J (2007) Different carbon support for respiration and secondary production in unproductive lakes. Oikos 116:1691–1696CrossRefGoogle Scholar
  29. Karlsson J, Säwström C (2009) Benthic algae support zooplankton growth during winter in a clear-water lake. Oikos 118:539–544Google Scholar
  30. Karlsson J, Jonsson A, Meili M, Jansson M (2003) Control of zooplankton dependence on allochthonous organic carbon in humic and clear-water lakes in northern Sweden. Limnol Oceanogr 48:269–276CrossRefGoogle Scholar
  31. Karlsson J, Jonsson A, Meili M, Jansson M (2004) δ15N of zooplankton species in subarctic lakes in northern Sweden: effects of diet and trophic fractionation. Freshw Biol 49:526–534CrossRefGoogle Scholar
  32. Karlsson J, Ask J, Jansson M (2008) Winter respiration of allochthonous and autochthonous organic carbon in a subarctic clear-water lake. Limnol Oceanogr 53:948–954CrossRefGoogle Scholar
  33. Kiljunen M, Grey J, Sinisalo T, Harrod C, Immonen H, Jones RI (2006) A revised model for lipid-normalizing delta C-13 values from aquatic organisms, with implications for isotope mixing models. J Appl Ecol 43:1213–1222CrossRefGoogle Scholar
  34. Klug JL (2005) Bacterial response to dissolved organic matter affects resource availability for algae. Can J Fish Aquat Sci 62:472–481CrossRefGoogle Scholar
  35. Kortelainen P, Pajunen H, Rantakari M, Saarnisto M (2004) A large carbon pool and small sink in boreal Holocene lake sediments. Glob Change Biol 10:1648–1653CrossRefGoogle Scholar
  36. McConnaughey T, McRoy CP (1979) Food-web structure and the fractionation of carbon isotopes in the Bering Sea. Mar Biol 53:257–262CrossRefGoogle Scholar
  37. McGoldrick DJ, Barton DR, Power M, Scott RW, Butler BJ (2008) Dynamics of bacteria-substrate stable isotope separation: dependence on substrate availability and implications for aquatic food web studies. Can J Fish Aquat Sci 65:1983–1990CrossRefGoogle Scholar
  38. Pace ML, Cole JJ, Carpenter SR, Kitchell JF, Hodgson JR, Van de Bogert MC, Bade DL, Kritzberg ES, Bastviken D (2004) Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature 427:240–243PubMedCrossRefGoogle Scholar
  39. Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127:171–179CrossRefGoogle Scholar
  40. Polis GA, Strong DR (1996) Food web complexity and community dynamics. Am Nat 147:813–846CrossRefGoogle Scholar
  41. Polis GA, Anderson WB, Holt RD (1997) Towards an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316CrossRefGoogle Scholar
  42. Porter ET, Sanford LP, Gust G, Porter FS (2004) Combined water-column mixing and benthic boundary-layer flow in mesocosms: key for realistic benthic-pelagic coupling studies. Mar Ecol Prog Ser 271:43–60CrossRefGoogle Scholar
  43. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718CrossRefGoogle Scholar
  44. Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montana CG (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189PubMedCrossRefGoogle Scholar
  45. Preston ND, Carpenter SR, Cole JJ, Pace ML (2008) Airborne carbon deposition on a remote forested lake. Aquat Sci 70:213–224CrossRefGoogle Scholar
  46. Rautio M, Vincent WF (2007) Isotopic analysis of the sources of organic carbon for zooplankton in shallow subarctic and arctic waters. Ecography 30:77–87Google Scholar
  47. Schindler DE, Scheuerell MD (2002) Habitat coupling in lake ecosystems. Oikos 98:177–189CrossRefGoogle Scholar
  48. Schmid-Araya JM, Schmid PE (2000) Trophic relationships: integrating meiofauna into a realistic benthic food web. Freshw Biol 44:149–163CrossRefGoogle Scholar
  49. Schmidt SN, Olden JD, Solomon CT, Vander Zanden MJ (2007) Quantitative approaches to the analysis of stable isotope food web data. Ecology 88:2793–2802PubMedCrossRefGoogle Scholar
  50. Schmidt SN, Vander Zanden MJ, Kitchell JF (2009) Long-term food web change in Lake Superior. Can J Fish Aquat Sci 66:2118–2129CrossRefGoogle Scholar
  51. Smock LA (1980) Relationships between body size and biomass of aquatic insects. Freshw Biol 10:375–383CrossRefGoogle Scholar
  52. Smyntek PM, Teece MA, Schulz KL, Thackeray SJ (2007) A standard protocol for stable isotope analysis of zooplankton in aquatic food web research using mass balance correction models. Limnol Oceanogr 52:2135–2146CrossRefGoogle Scholar
  53. Solomon CT, Carpenter SR, Cole JJ, Pace ML (2008) Support of benthic invertebrates by detrital resources and current autochthonous primary production: results from a whole-lake C-13 addition. Freshw Biol 53:42–54Google Scholar
  54. Solomon CT, Carpenter SR, Clayton MK, Cole JJ, Coloso JJ, Pace ML, Vander Zanden MJ, Weidel BC (2011) Terrestrial, benthic, and pelagic resource use in lakes: results from a three-isotope Bayesian mixing model. Ecology 92:1115–1125PubMedCrossRefGoogle Scholar
  55. Sommer U, Sommer F (2006) Cladocerans versus copepods: the cause of contrasting top-down controls on freshwater and marine phytoplankton. Oecologia 147:183–194PubMedCrossRefGoogle Scholar
  56. Stets EG, Cotner JB (2008) The influence of dissolved organic carbon on bacterial phosphorus uptake and bacteria phytoplankton dynamics in two Minnesota lakes. Limnol Oceanogr 53:137–147CrossRefGoogle Scholar
  57. Tranvik LJ (1988) Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of different humic content. Microb Ecol 16:311–322CrossRefGoogle Scholar
  58. Vadeboncoeur Y, Vander Zanden MJ, Lodge DM (2002) Putting the lake back together: reintegrating benthic pathways into lake food web models. Bioscience 52:44–54CrossRefGoogle Scholar
  59. von Wachenfeldt E, Tranvik LJ (2008) Sedimentation in boreal lakes-the role of flocculation of allochthonous dissolved organic matter in the water column. Ecosystems 11:803–814CrossRefGoogle Scholar
  60. Zar JH (1996) Biostatistical analysis. Prentice Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Pia Bartels
    • 1
  • Julien Cucherousset
    • 2
    • 3
    • 4
  • Cristian Gudasz
    • 1
  • Mats Jansson
    • 5
  • Jan Karlsson
    • 6
  • Lennart Persson
    • 5
  • Katrin Premke
    • 1
    • 7
    • 8
  • Anja Rubach
    • 5
  • Kristin Steger
    • 1
    • 9
  • Lars J. Tranvik
    • 1
  • Peter Eklöv
    • 1
  1. 1.Department of Ecology and Genetics/Limnology, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
  2. 2.Centre for Conservation Ecology and Environmental Sciences, School of Applied SciencesBournemouth UniversityPooleUK
  3. 3.CNRS, UPS, ENFA, UMR5174, Laboratoire EDB (Évolution et Diversité Biologique)ToulouseFrance
  4. 4.UPS, UMR5174, Laboratoire Évolution et Diversité Biologique (EDB), Université de ToulouseToulouseFrance
  5. 5.Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
  6. 6.Department of Ecology and Environmental Science, Climate Impacts Research CentreUmeå UniversityAbiskoSweden
  7. 7.Leibniz Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
  8. 8.Leibniz Centre for Agricultural Landscape ResearchMünchebergGermany
  9. 9.Indo-German Centre for SustainabilityIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations