, Volume 168, Issue 3, pp 727–736 | Cite as

An arthropod deterrent attracts specialised bees to their host plants

  • Hannah Burger
  • Stefan Dötterl
  • Christopher M. Häberlein
  • Stefan Schulz
  • Manfred Ayasse
Plant-Animal interactions - Original Paper


Many bee species are adapted to just a few specific plants in order to collect pollen (oligolecty). To reproduce successfully, it is important for oligolectic bees to find and recognise the specific host flowers. In this study, we investigated the role of floral volatiles used by an oligolectic bee to recognise its host plants. We compared the attractiveness of natural and synthetic scent samples of host flowers to foraging-naïve and -experienced Hoplitis adunca (Megachilidae) bees that are specialised on Echium and Pontechium (Boraginaceae) plants. The investigations showed that naïve H. adunca females are attracted to 1,4-benzoquinone. During their lifetime, bees learn additional floral cues while foraging on host flowers. In contrast to naïve ones, experienced H. adunca females use, in addition to 1,4-benzoquinone, other compounds to recognise their host plants. 1,4-Benzoquinone is an uncommon floral compound only known from the host plants of H. adunca, and is therefore ideally suited to be used as a plant-specific recognition cue. Several arthropods use this compound to deter insect predators. Therefore, 1,4-benzoquinone as an attractant in Echium flowers may have evolved from a primary function as a defensive compound against insect herbivores.


Host plant recognition Floral scent 1,4-Benzoquinone Hoplitis adunca (Megachilidae) Echium (Boraginaceae) 



We gratefully acknowledge Paulo Milet-Pinheiro for his critical reading, David Ponting for his linguistic advice, and two anonymous reviewers gave valuable comments on earlier versions of this manuscript. H.B. wishes to thank the Studienstiftung des deutschen Volkes for financial support. All experiments comply with the current laws of the country in which they were performed: in this case, Germany.

Supplementary material

442_2011_2136_MOESM1_ESM.doc (26 kb)
Supplementary material 1 (DOC 25 kb)
442_2011_2136_MOESM2_ESM.doc (25 kb)
Supplementary material 2 (DOC 25 kb)
442_2011_2136_MOESM3_ESM.pdf (101 kb)
Supplementary material 3 (EPS 101 kb)


  1. Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectrometry. Allured, Carol StreamGoogle Scholar
  2. Ayasse M (2006) Floral scent and pollinator attraction in sexually deceptive orchids. In: Dudareva N, Pichersky E (eds) Biology of floral scent. CRC, Boca Raton, pp 219–242CrossRefGoogle Scholar
  3. Ayasse M, Schiestl FP, Paulus HF, Ibarra F, Francke W (2003) Pollinator attraction in a sexually deceptive orchid by means of unconventional chemicals. Proc R Soc Lond B 270:517–522. doi: 10.1098/rspb.2002.2271 CrossRefGoogle Scholar
  4. Ayasse M, Schiestl FP, Paulus HF, Löfstedt C, Hansson B, Ibarra F, Francke W (2000) Evolution of reproductive strategies in the sexually deceptive orchid Ophrys sphegodes: how does flower-specific variation of odor signals influence reproductive success? Evolution 54:1995–2006. doi: 10.1554/0014-3820(2000)054[1995:EORSIT]2.0.CO;2 PubMedGoogle Scholar
  5. Ayasse M, Stökl J, Francke W (2011) Chemical ecology and speciation in sexually deceptive orchids. Phytochemistry doi: 10.1016/j.phytochem.2011.03.023
  6. Blum MS (1981) 1, 4-Quinones and hydroquinones. In: Blum MS (ed) Chemical defenses of arthropods. Academic, New York, pp 183–205Google Scholar
  7. Brodmann J, Twele R, Francke W, Hoelzler G, Zhang Q-H, Ayasse M (2008) Orchids mimic green-leaf volatiles to attract prey-hunting wasps for pollination. Curr Biol 18:740–744. doi: 10.1016/j.cub.2008.04.040 PubMedCrossRefGoogle Scholar
  8. Brodmann J, Twele R, Francke W, Yi-bo L, Xi-qiang S, Ayasse M (2009) Orchid mimics honey bee alarm pheromone in order to attract hornets for pollination. Curr Biol 19:1368–1372. doi: 10.1016/j.cub.2009.06.067 PubMedCrossRefGoogle Scholar
  9. Burger H, Ayasse M, Häberlein CM, Schulz S, Dötterl S (2010a) Echium and Pontechium specific floral cues for host plant recognition by the oligolectic bee Hoplitis adunca. S Afr J Bot 76:788–795. doi: 10.1016/j.sajb.2010.08.003 CrossRefGoogle Scholar
  10. Burger H, Dötterl S, Ayasse M (2008) Importance of olfactory and visual cues of Echium for host plant finding of the oligolectic bee Osmia adunca (Megachilidae). Mitt Dtsch Ges Allg Angew Entomol 16:163–166Google Scholar
  11. Burger H, Dötterl S, Ayasse M (2010b) Host plant finding and recognition by visual and olfactory floral cues in an oligolectic bee. Funct Ecol 24:1234–1240. doi: 10.1111/j.1365-2435.2010.01744.x CrossRefGoogle Scholar
  12. Chambliss OL, Jones CM (1966) Chemical and genetic basis for insect resistance in cucurbits. Proc Am Soc Hort Sci 89:394–405Google Scholar
  13. Cane JH, Sipes SD (2006) Characterizing floral specialization by bees: analytical methods and a revised lexicon for oligolecty. In: Waser NM, Ollerton J (eds) Plant–pollinator interactions: from specialization to generalization. University of Chicago Press, Chicago, pp 99–122Google Scholar
  14. Chen C, Song Q, Proffit M, Bessière J-M, Li Z, Hossaert-McKey M (2009) Private channel: a single unusual compound assures specific pollinator attraction in Ficus semicordata. Funct Ecol 23:941–950. doi: 10.1111/j.1365-2435.2009.01622.x CrossRefGoogle Scholar
  15. Corbet SA (1978) Bee visits and the nectar of Echium vulgare L. and Sinapis alba L. Ecol Entomol 3:25–37. doi: 10.1111/j.1365-2311.1978.tb00900.x CrossRefGoogle Scholar
  16. Corey EJ, Schmidt G (1979) Useful procedures for the oxidation of alcohols involving pyridinium dichromate in approtic media. Tetrahedron Lett 20:399–402. doi: 10.1016/S0040-4039(01)93515-4 CrossRefGoogle Scholar
  17. Da Costa CP, Jones CM (1971) Cucumber beetle resistance and mite susceptibility controlled by the bitter gene in Cucumis sativus L. Science 172:1145–1146. doi: 10.1126/science.172.3988.1145 PubMedCrossRefGoogle Scholar
  18. Dobson HEM (1987) Role of flower and pollen aromas in host plant recognition by solitary bees. Oecologia 72:618–623. doi: 10.1007/BF00378991 CrossRefGoogle Scholar
  19. Dobson HEM (2006) Relationship between floral fragrance composition and type of pollinator. In: Dudareva N, Pichersky E (eds) Biology of floral scent. CRC, Boca Raton, pp 147–198CrossRefGoogle Scholar
  20. Dobson HEM, Bergström G (2000) The ecology and evolution of pollen odors. Plant Syst Evol 222:63–87. doi: 10.1007/BF00984096 CrossRefGoogle Scholar
  21. Dobson HEM, Danielson EM, van Wesep ID (1999) Pollen odor chemicals as modulators of bumble bee foraging on Rosa rugosa Thunb. (Rosaceae). Plant Species Biol 14:153–166. doi: 10.1046/j.1442-1984.1999.00020.x CrossRefGoogle Scholar
  22. Dötterl S, Füssel U, Jürgens A, Aas G (2005a) 1, 4-Dimethoxybenzene, a floral scent compound in willows that attracts an oligolectic bee. J Chem Ecol 31:2993–2998. doi: 10.1007/s10886-005-9152-y PubMedCrossRefGoogle Scholar
  23. Dötterl S, Jürgens A (2005) Spatial fragrance patterns in flowers of Silene latifolia: lilac compounds as olfactory nectar guides? Plant Syst Evol 255:99–109. doi: 10.1007/s00606-005-0344-2 CrossRefGoogle Scholar
  24. Dötterl S, Jürgens A, Seifert K, Laube T, Weißbecker B, Schütz S (2006) Nursery pollination by a moth in Silene latifolia: the role of odours in eliciting antennal and behavioural responses. New Phytol 169:707–718. doi: 10.1111/j.1469-8137.2005.01509.x PubMedCrossRefGoogle Scholar
  25. Dötterl S, Schäffler I (2007) Flower scent of floral oil-producing Lysimachia punctata as attractant for the oil-bee Macropis fulvipes. J Chem Ecol 33:441–445. doi: 10.1007/s10886-006-9237-2 PubMedCrossRefGoogle Scholar
  26. Dötterl S, Vereecken NJ (2010) The chemical ecology and evolution of bee–flower interactions: a review and perspectives. Can J Zool 88:668–697. doi: 10.1139/Z10-031 CrossRefGoogle Scholar
  27. Dötterl S, Wolfe LM, Jürgens A (2005b) Qualitative and quantitative analyses of flower scent in Silene latifolia. Phytochemistry 66:203–213. doi: 10.1016/j.phytochem.2004.12.002 PubMedCrossRefGoogle Scholar
  28. Giurfa M, Núñez J, Chittka L, Menzel R (1995) Colour preferences of flower-naive honeybees. J Comp Physiol A Sens Neural Behav Physiol 177:247–259. doi: 10.1007/BF00192415 CrossRefGoogle Scholar
  29. Hegnauer R (1992) Chemotaxonomie der Pflanzen. Birkhäuser, BaselGoogle Scholar
  30. Jetter R (2006) Examination of the process involved in the emission of scent volatiles from flowers. In: Dudareva N, Pichersky E (eds) Biology of floral scent. CRC, Boca Raton, pp 125–144CrossRefGoogle Scholar
  31. Joulain D, König WA (1998) The atlas of spectral data of sesquiterpene hydrocarbons. EB, HamburgGoogle Scholar
  32. Kessler A, Halitschke R (2009) Testing the potential for conflicting selection on floral chemical traits by pollinators and herbivores: predections and case study. Funct Ecol 23:901–912. doi: 10.1111/j.1365-2435.2009.01639.x CrossRefGoogle Scholar
  33. Klinkhamer PGL, de Jong TJ, Wesselingh RA (1991) Implications of differences between hermaphrodite and female flowers for attractiveness to pollinators and seed production. Neth J Zool 41:130–143. doi: 10.1163/156854291X00081 CrossRefGoogle Scholar
  34. Knudsen JT, Eriksson R, Gershenzon J, Stahl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120. doi: 10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2 CrossRefGoogle Scholar
  35. Minckley RL, Roulston TH (2006) Incidental mutualisms and pollen specialization among bees. In: Waser NM, Ollerton J (eds) Plant–pollinator-interactions: from specialization to generalization. University of Chicago Press, Chicago, pp 69–98Google Scholar
  36. Müller A, Diener S, Schnyder S, Stutz K, Sedivy C, Dorn S (2006) Quantitative pollen requirements of solitary bees: implications for bee conservation and the evolution of bee-flower relationships. Biol Conserv 130:604–615. doi: 10.1016/j.biocon.2006.01.023 CrossRefGoogle Scholar
  37. Müller A, Kuhlmann M (2008) Pollen hosts of western palaearctic bees of the genus Colletes (Hymenoptera: Colletidae): the Asteraceae paradox. Biol J Linn Soc 95:719–733. doi: 10.1111/j.1095-8312.2008.01113.x CrossRefGoogle Scholar
  38. Norris DM (1970) Quinol stimulation and quinone deterrency of gustation by Scolytus multistriatus (Coleoptera: Scolytidae). Ann Entomol Soc Am 63:476–478Google Scholar
  39. Pellmyr O, Thien L (1986) Insect reproduction and floral fragrances: keys to the evolution of the angiosperms? Taxon 35:76–85Google Scholar
  40. Raguso RA (2008a) Start making scents: the challenge of integrating chemistry into pollination ecology. Entomol Exp Appl 128:196–207. doi: 10.1111/j.1570-7458.2008.00683.x CrossRefGoogle Scholar
  41. Raguso RA (2008b) Wake up and smell the roses: the ecology and evolution of floral scent. Annu Rev Ecol Evol Syst 39:549–569. doi: 10.1146/annurev.ecolsys.38.091206.095601 CrossRefGoogle Scholar
  42. Reese JC, Beck SD (1976) Effects of allelochemics on the Black Cutworm, Agrotis ipsilon; effects of p-benzoquinone, hydroquinone, and duroquinone on larval growth, development, and utilization of food. Ann Entomol Soc Am 69:59–67Google Scholar
  43. Robertson C (1925) Heterotropic bees. Ecology 6:412–436. doi: 10.2307/1929107 CrossRefGoogle Scholar
  44. Schaefer HM, Schaefer V, Levey DJ (2004) How plant-animal interactions signal new insights in communication. Trends Ecol Evol 19:577–584. doi: 10.1016/j.tree.2004.08.003 CrossRefGoogle Scholar
  45. Schiestl FP (2005) On the success of a swindle: pollination by deception in orchids. Naturwissenschaften 92:255–264. doi: 10.1007/s00114-005-0636-y PubMedCrossRefGoogle Scholar
  46. Schiestl FP (2010) The evolution of floral scent and insect chemical communication. Ecol Lett 13:643–656. doi: 10.1111/j.1461-0248.2010.01451.x PubMedCrossRefGoogle Scholar
  47. Schiestl FP, Ayasse M (2001) Post-pollination emission of a repellent compound in a sexually deceptive orchid: a new mechanism for maximising reproductive success? Oecologia 126:531–534. doi: 10.1007/s004420000552 CrossRefGoogle Scholar
  48. Schiestl FP, Ayasse M, Paulus HF, Löfstedt C, Hansson BS, Ibarra F, Francke W (1999) Orchid pollination by sexual swindle. Nature 399:421–422. doi: 10.1038/20829 CrossRefGoogle Scholar
  49. Schulz S, Gross J, Hilker M (1997) Origin of the defensive secretion of the leaf beetle Chrysomela lapponica. Tetrahedron 53:9203–9212. doi: 10.1016/S0040-4020(97)00618-2 CrossRefGoogle Scholar
  50. da Silva UF, Borbac EL, Semir J, Marsaioli AJ (1999) A simple solid injection device for the analyses of Bulbophyllum (Orchidaceae) volatiles. Phytochemistry 50:31–34. doi: 10.1016/S0031-9422(98)00459-2 CrossRefGoogle Scholar
  51. Svensson GP, Okamoto T, Kawakita A, Goto R, Kato M (2010) Chemical ecology of obligate pollination mutualisms: testing the ‘private channel’ hypothesis in the BreyniaEpicephala association. New Phytol 186:995–1004. doi: 10.1111/j.1469-8137.2010.03227.x PubMedCrossRefGoogle Scholar
  52. Thomson JD (2003) When it is mutualism? Am Nat 162:S1–S9. doi: 10.1086/378683 PubMedCrossRefGoogle Scholar
  53. Thomson RH (1997) Naturally occuring quinones IV. Chapman and Hall, LondonGoogle Scholar
  54. Watanabe N, Watanabe S, Nakajima R, Moon J-H, Shimokihara K, Inagaki J, Etoh H, Asai T, Sakata K, Ina K (1993) Formation of flower fragrance compounds from their precursors by enzymic action during flower opening. Biosci Biotech Biochem 57:1101–1106CrossRefGoogle Scholar
  55. Whitehead MR, Peakall R (2009) Integrating floral scent, pollination ecology and population genetics. Funct Ecol 23:863–874. doi: 10.1111/j.1365-2435.2009.01620.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Hannah Burger
    • 1
  • Stefan Dötterl
    • 2
  • Christopher M. Häberlein
    • 3
  • Stefan Schulz
    • 3
  • Manfred Ayasse
    • 1
  1. 1.Institute of Experimental EcologyUniversity of UlmUlmGermany
  2. 2.Department of Plant SystematicsUniversity of BayreuthBayreuthGermany
  3. 3.Institut für Organische ChemieTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations