Skip to main content

Advertisement

Log in

Synergistic control of CO2 emissions by fish and nutrients in a humic tropical lake

  • Ecosystem ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Using experimental mesocosms, we tested the strength of bottom–up controls by nutrients and top–down controls by an omnivorous fish (Hyphessobrycon bifasciatus; family Characidae), and the interaction between them on the CO2 partial pressure (pCO2) in the surface waters of a tropical humic lake (Lake Cabiúnas, Brazil). The experiment included the addition of nutrients and fish to the mesocosms in a factorial design. Overall, persistent CO2 emissions to the atmosphere, supported by an intense net heterotrophy, were observed in all treatments and replicates over the 6-week study period. The CO2 efflux (average ± standard error) integrated over the experiment was similar among the control mesocosms and those receiving only fish or only nutrients (309 ± 2, 303 ± 16, and 297 ± 17 mmol CO2 m−2 day−1, respectively). However, the addition of nutrients in the presence of fish resulted in a high algal biomass and daytime net autotrophy, reducing the CO2 emissions by 35% (by 193 ± 7 mmol CO2 m−2 day−1). These results indicate that high CO2 emissions persist following the eutrophication of humic waters, but that the magnitude of these emissions might depend on the structure of the food web. In conclusion, fish and nutrients may act in a synergistic manner to modulate persistent CO2 emissions from tropical humic lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amado AM, Cotner JB, Suhett AL, Esteves FD, Bozelli RL, Farjalla VF (2007) Contrasting interactions mediate dissolved organic matter decomposition in tropical aquatic ecosystems. Aquat Microb Ecol 49:25–34

    Article  Google Scholar 

  • American Public Health Association (APHA) (1992) Standard methods for the examination of water and wastewater, vol 18. APHA, Washington, DC

  • Archer CL, Jacobson MZ (2005) Evaluation of global wind power. J Geophys Res Atmos 110:D12110. doi:10.1029/2004jd005462

  • Benson BB, Krause DJr (1984) The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnol Oceanogr 29:620–632

    Google Scholar 

  • Beutler M et al (2002) A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynth Res 72:39–53

    Article  PubMed  CAS  Google Scholar 

  • Biddanda B, Ogdahl M, Cotner J (2001) Dominance of bacterial metabolism in oligotrophic relative to eutrophic waters. Limnol Oceanogr 46:730–739

    Article  Google Scholar 

  • Carignan R, Planas D, Vis C (2000) Planktonic production and respiration in oligotrophic Shield lakes. Limnol Oceanogr 45:189–199

    Article  Google Scholar 

  • Carmouze JP, Knoppers B, Vasconcelos P (1991) Metabolism of a subtropical Brazilian lagoon. Biogeochemistry 14:129–148

    Article  Google Scholar 

  • Carneiro LS (2008) Efeito de peixes onívoros sobre a estrutura e estabilidade de cadeias tróficas aquáticas (in Portuguese). PhD thesis. Federal University of Rio de Janeiro, Rio de Janeiro

  • Chrzanowski TH, Grover JP (2001) Effects of mineral nutrients on the growth of bacterio- and phytoplankton in two southern reservoirs. Limnol Oceanogr 46:1319–1330

    Article  CAS  Google Scholar 

  • Cole JJ, Caraco NF (1998) Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol Oceanogr 43:647–656

    Article  CAS  Google Scholar 

  • Cole JJ, Caraco NF, Kling GW, Kratz TK (1994) Carbon-dioxide supersaturation in the surface waters of lakes. Science 265:1568–1570

    Article  PubMed  CAS  Google Scholar 

  • Cole JJ, Pace ML, Carpenter SR, Kitchell JF (2000) Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnol Oceanogr 45:1718–1730

    Article  Google Scholar 

  • Cole JJ et al (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184

    Article  CAS  Google Scholar 

  • Coutinho AB, Aguiaro T, Branco CWC, Albuquerque EF, Souza-Filho IF (2000) Feeding of Hyphessobrycon bifasciatus Ellis, 1911 (Osteichthyes, Characidae) in Lake Cabiúnas, Macaé, RJ. Acta Limnol Bras 12:45–54

    Google Scholar 

  • Drenner RW, Smith JD, Threlkeld ST (1996) Lake trophic state and the limnological effects of omnivorous fish. Hydrobiologia 319:213–223

    Article  CAS  Google Scholar 

  • Duarte CM, Agusti S (1998) The CO2 balance of unproductive aquatic ecosystems. Science 281:234–236

    Article  PubMed  CAS  Google Scholar 

  • Duarte CM, Prairie YT (2005) Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems. Ecosystems 8:862–870

    Article  CAS  Google Scholar 

  • Fee EJ (1979) Relation between Lake Morphometry and primary productivity and its use in interpreting whole-lake eutrophication experiments. Limnol Oceanogr 24:401–416

    Article  CAS  Google Scholar 

  • Garcia LV (2004) Escaping the Bonferroni iron claw in ecological studies. Oikos 105:657–663

    Article  Google Scholar 

  • Guariento RD, Carneiro LS, Caliman A, Bozelli RL, Leal JJF, Esteves FDA (2010) Interactive effects of omnivorous fish and nutrient loading on net productivity regulation of phytoplankton and periphyton. Aquat Biol 10:273–282

    Article  Google Scholar 

  • Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik LJ (2010) Temperature-controlled organic carbon mineralization in lake sediments. Nature 466:U473–U478

    Google Scholar 

  • Hanson PC, Bade DL, Carpenter SR, Kratz TK (2003) Lake metabolism: relationships with dissolved organic carbon and phosphorus. Limnol Oceanogr 48:1112–1119

    Article  CAS  Google Scholar 

  • Lennon JT (2004) Experimental evidence that terrestrial carbon subsidies increase CO2 flux from lake ecosystems. Oecologia 138:584–591

    Article  PubMed  Google Scholar 

  • Marotta H, Duarte CM, Sobek S, Enrich-Prast A (2009a) Large CO2 disequilibria in tropical lakes. Global Biogeochem Cycles 23:GB4022. doi:10.1029/2008GB003434

  • Marotta H, Paiva LT, Petrucio MM (2009b) Changes in thermal and oxygen stratification pattern coupled to persistence of CO2 outgassing in shallow lakes of the surroundings of Atlantic Tropical Forest, Brazil. Limnology 10:195–202

    Google Scholar 

  • Marotta H, Duarte CM, Meirelles-Pereira F, Bento L, Esteves FA, Enrich-Prast A (2010a) Long-term variability of CO2 in two shallow tropical lakes experiencing episodic eutrophication and acidification events. Ecosystems 13:382–392

    Article  CAS  Google Scholar 

  • Marotta H, Duarte CM, Pinho L, Enrich-Prast A (2010b) Rainfall leads to increased pCO2 in Brazilian coastal lakes. Biogeosciences 7:1607–1614

    Article  CAS  Google Scholar 

  • McCollum EW, Crowder LB, McCollum SA (1998) Complex interactions of fish, snails, and littoral zone periphyton. Ecology 79:1980–1994

    Article  Google Scholar 

  • Moss B, Stephen D, Balayla DM, Becares E, Collings SE et al (2004) Continental-scale patterns of nutrient and fish effects on shallow lakes: synthesis of a pan-European mesocosm experiment. Freshw Biol 49:1633–1649

    Google Scholar 

  • Odum HT (1956) Primary production in flowing waters. Limnol Oceanogr 1:102–117

    Article  Google Scholar 

  • Okun N, Brasil J, Attayde JL, Costa IAS (2008) Omnivory does not prevent trophic cascades in pelagic food webs. Freshw Biol 53:129–138

    Google Scholar 

  • Panosso R, Attayde JL, Muehe D (1998) Morphometry of the Imboassica, Cabiúnas and Carapebus Lagoons: implications for its functioning and management (original in portuguese). In: Esteves FA (ed) Ecology of coastal lagoons (original in Portuguese). NUPEM/UFRJ, Macaé, pp 91–108

    Google Scholar 

  • Polis GA (1999) Why are parts of the world green? Multiple factors control productivity and the distribution of biomass. Oikos 86:3–15

    Article  Google Scholar 

  • Prairie YT, Bird DF, Cole JJ (2002) The summer metabolic balance in the epilimnion of southeastern Quebec lakes. Limnol Oceanogr 47:316–321

    Article  CAS  Google Scholar 

  • Schindler DE, Carpenter SR, Cole JJ, Kitchell JF, Pace ML (1997) Influence of food web structure on carbon exchange between lakes and the atmosphere. Science 277:248–251

    Article  CAS  Google Scholar 

  • Simberloff D (2003) Communities and ecosystems impacts of single-species extinctions. In: Kareiva P, Levin SA (eds) The importance of species: perspectives on expendability and triage. Princeton University Press, Princeton

    Google Scholar 

  • Sobek S, Tranvik LJ, Cole JJ (2005) Temperature independence of carbon dioxide supersaturation in global lakes. Global Biogeochem Cycles 19:1–10

    Article  Google Scholar 

  • Stephen D, Balayla DM, Bécares E, Collings SE, Fernández-Aláez C, Fernández-Aláez M, Ferriol C et al (2004) Continental-scale patterns of nutrient and fish effects on shallow lakes: introduction to a pan-European mesocosm experiment. Freshw Biol 49:1517–1524

    Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry:chemical equilibria and rates in natural waters, vol 3. Wiley, New York

    Google Scholar 

  • Wanninkhof R (1992) Relationship between wind-speed and gas-exchange over the ocean. J Geophys Res Oceans 97:7373–7382

    Article  Google Scholar 

  • Wanninkhof R, Knox M (1996) Chemical enhancement of CO2 exchange in natural waters. Limnol Oceanogr 41:689–697

    Article  CAS  Google Scholar 

  • Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2:203–215

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Brazilian government (CAPES/MEC). The authors received financial support from the Rio de Janeiro State Science Foundation (FAPERJ). This project is also a contribution to the project PQ 307734/2006-4 funded by the Brazilian National Science Foundation (CNPq). We thank the Macaé Ecological Research Centre (NUPEM/UFRJ) for logistic support and L. Carneiro, A. Caliman, R. D. Guariento, and A. Rocha for their invaluable help in the field and contributions in scientific discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto Marotta.

Additional information

Communicated by Joel Trexler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marotta, H., Duarte, C.M., Guimarães-Souza, B.A. et al. Synergistic control of CO2 emissions by fish and nutrients in a humic tropical lake. Oecologia 168, 839–847 (2012). https://doi.org/10.1007/s00442-011-2131-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-011-2131-9

Keywords

Navigation