, Volume 168, Issue 2, pp 533–548 | Cite as

Species traits and environmental conditions govern the relationship between biodiversity effects across trophic levels

  • Daniel E. Spooner
  • Caryn C. Vaughn
  • Heather S. Galbraith
Community ecology - Methods Paper


Changing environments can have divergent effects on biodiversity–ecosystem function relationships at alternating trophic levels. Freshwater mussels fertilize stream foodwebs through nutrient excretion, and mussel species-specific excretion rates depend on environmental conditions. We asked how differences in mussel diversity in varying environments influence the dynamics between primary producers and consumers. We conducted field experiments manipulating mussel richness under summer (low flow, high temperature) and fall (moderate flow and temperature) conditions, measured nutrient limitation, algal biomass and grazing chironomid abundance, and analyzed the data with non-transgressive overyielding and tripartite biodiversity partitioning analyses. Algal biomass and chironomid abundance were best explained by trait-independent complementarity among mussel species, but the relationship between biodiversity effects across trophic levels (algae and grazers) depended on seasonal differences in mussel species’ trait expression (nutrient excretion and activity level). Both species identity and overall diversity effects were related to the magnitude of nutrient limitation. Our results demonstrate that biodiversity of a resource-provisioning (nutrients and habitat) group of species influences foodweb dynamics and that understanding species traits and environmental context are important for interpreting biodiversity experiments.


Biodiversity partitioning Complementarity Ecosystem function Environmental context Freshwater Mollusk Nutrient limitation Species traits Trophic level 



We thank T. Garrett for allowing access to the field site, R. Deaton, S. and B. Dengler, D. Fenolio, S. Frazier, P. Jeyasingh, M. Jones, S. Jones, F. March, K. Reagan, R. Remington, and E. Webber for field and/or laboratory assistance, and D. Allen for comments on the manuscript. This study was funded by the National Science Foundation (DEB-0211010) and is a contribution to the program of the Oklahoma Biological Survey.


  1. Ackerly DD, Cornwell WK (2007) A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecol Lett 10:135–145PubMedCrossRefGoogle Scholar
  2. Allen DC, Vaughn CC (2009) Burrowing behavior of freshwater mussels in experimentally manipulated communities. J North Am Benthol Soc 28:93–100CrossRefGoogle Scholar
  3. ASTM (1995) Standard methods for the examination of water and wastewater. American Public Health Association/American Water Works Association/Water Environment Federation, AlexandriaGoogle Scholar
  4. Borer ET, Seabloom EW, Shurin JB, Anderson KE, Blanchette CA, Broitman B, Cooper SD, Halper BS (2005) What determines the strength of a trophic cascade? Ecology 86:528–537CrossRefGoogle Scholar
  5. Canuel EA, Spivak AC, Waterson EJ, Duffy JE (2007) Biodiversity and food web structure influence short-term accumulation of sediment organic matter in an experimental seagrass system. Limnol Oceanogr 52:590–602CrossRefGoogle Scholar
  6. Cardinale BJ, Nelson K, Palmer MA (2000) Linking species diversity to the functioning of ecosystems: on the importance of environmental context. Oikos 9:175–183CrossRefGoogle Scholar
  7. Cardinale BJ (2011) Biodiversity improves water quality through niche partitioning. Nature 472:86–89PubMedCrossRefGoogle Scholar
  8. Cardinale BJ, Palmer MA, Collins SL (2002) Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 414:427–429Google Scholar
  9. Cardinale BJ, Svristava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau JC (2006) Effects of diversity on the functioning of trophic groups and ecosystems. Nature 443:991–992CrossRefGoogle Scholar
  10. Diaz S, Boy-Meir I, Cabido M (2001) Can grazing response of herbaceous plants be predicted from simple vegetative traits? J Appl Ecol 38:497–508CrossRefGoogle Scholar
  11. Douglass JG, Duffy JE, Bruno JF (2008) Herbivore and predator diversity interactively affect ecosystem properties in an experimental marine community. Ecol Lett 11:598–608PubMedCrossRefGoogle Scholar
  12. Duffy JE (2003) Biodiversity loss, trophic skew and ecosystem functioning. Ecol Lett 6:680–687CrossRefGoogle Scholar
  13. Duffy JE, Cardinale BJ, France KE, McIntyre PB, Thebault E, Loreau M (2007) The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol Lett 10:522–538PubMedCrossRefGoogle Scholar
  14. Duffy JE, Richardson PJ, Canuel EA (2003) Grazer diversity effects on ecosystem functioning in seagrass beds. Ecol Lett 6:637–645CrossRefGoogle Scholar
  15. Dyer LA, Letourneau D (2003) Top-down and bottom-up diversity cascades in detrital vs. living food webs. Ecol Lett 6:60–68CrossRefGoogle Scholar
  16. Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine, and terrestrial ecosystems. Ecol Lett 10:1–8CrossRefGoogle Scholar
  17. Evans-White MA, Lamberti GA (2005) Grazer species effects on epilithon nutrient composition. Freshw Biol 50:1853–1863CrossRefGoogle Scholar
  18. Finke DL, Denno RF (2005) Predator diversity and the functioning of ecosystems: the role of intraguild predation in dampening trophic cascades. Ecol Lett 8:1299–1306CrossRefGoogle Scholar
  19. Fox JW (2005) Interpreting the selection effect of biodiversity on ecosystem function. Ecol Lett 8:846–856CrossRefGoogle Scholar
  20. Galbraith HS, Spooner DE, Vaughn CC (2008) Status of rare and endangered freshwater mussels in southeastern Oklahoma rivers. Southwest Nat 5:45–50CrossRefGoogle Scholar
  21. Galbraith HS, Spooner DE, Vaughn CC (2010) Synergistic effects of regional climate patterns and local water management on freshwater mussel communities. Biol Conserv 143:1175–1183CrossRefGoogle Scholar
  22. Gessner MO, Swan CM, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380PubMedCrossRefGoogle Scholar
  23. Gresens SE (1995) Grazer diversity, competition and the response of the periphyton community. Oikos 73:336–346CrossRefGoogle Scholar
  24. Griffin JN, De La Haye KL, Hawkins SJ, Thompson RC, Jenkins SR (2008) Predator diversity and ecosystem functioning: density modifies the effect of resource partitioning. Ecology 89:298–305PubMedCrossRefGoogle Scholar
  25. Hairston NG, Smith FE, Slobodkin LB (1960) Community structure, population control, and competition. Am Nat 94:421–425CrossRefGoogle Scholar
  26. Hillebrand H, Cardinale BJ (2004) Consumer effects decline with prey diversity. Ecol Lett 7:192–201CrossRefGoogle Scholar
  27. Hillebrand H, de Montpellier G, Liess A (2004) Effects of macrograzers and light on periphyton stoichiometry. Oikos 106:93–104CrossRefGoogle Scholar
  28. Hillebrand H, Matthiessen B (2009) Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecol Lett 12:1405–1419PubMedCrossRefGoogle Scholar
  29. Hillebrand H, Shurin JB (2005) Biodiversity and aquatic food webs. In: Belgrano A, Scharler UM, Dunne J, Ulanowicz RE (eds) Aquatic food webs–an ecosystem approach. Oxford University Press, Oxford, pp 184–197Google Scholar
  30. Hillebrand H, Gruner DS, Borer ET, Bracken MES, Cleland EE, Elser JJ, Harpole WS, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Consumer versus resource control of producer diversity depends on ecosystem type and producer community structure. Proc Natl Acad Sci USA 104:10904–10909PubMedCrossRefGoogle Scholar
  31. Hooper DU (1998) The role of complementarity and competition in ecosystem responses to variation in plant diversity. Ecology 79:704–719CrossRefGoogle Scholar
  32. Hunter MD, Price PW (1992) Playing chutes and ladders: heterogeneity and the relative roles of bottom–up and top–down forces in natural communities. Ecology 73:724–732Google Scholar
  33. Kahmen A, Renker C, Unsicker SB, Buchmann N (2006) Niche complementarity for nitrogen: an explanation for the biodiversity and ecosystem function relationship. Ecology 87:1244–1255PubMedCrossRefGoogle Scholar
  34. Kominoski JS, Hoellin TJ, Leroy CJ, Pringle CM, Swan CM (2010) Beyond species richness: expanding biodiversity-ecosystem functioning theory in detritus-based streams. Rivers Res Appl 26:67–75CrossRefGoogle Scholar
  35. Leibold MA, Chase JM, Shurin JB, Downing AL (1997) Species turnover and the regulation of trophic structure. Annu Rev Ecol Syst 28:467–494CrossRefGoogle Scholar
  36. Loreau M (1998) Separating sampling and other effects in biodiversity experiments. Oikos 82:600–602CrossRefGoogle Scholar
  37. Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76PubMedCrossRefGoogle Scholar
  38. Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808PubMedCrossRefGoogle Scholar
  39. Matthews WJ, Vaughn CC, Gido KB, Marsh-Matthews E (2005) Southern Plains Rivers. In: Benke AC, Cushing CE (eds) Rivers of North America. Elsevier, London, pp 283–325Google Scholar
  40. McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185PubMedCrossRefGoogle Scholar
  41. McIntyre PB, Flecker AS, Vanni MJ, Hood JM, Taylor BW, Thomas SA (2008) Fish distributions and nutrient cycling in streams: can fish create biogeochemical hotspots? Ecology 89:2335–2346PubMedCrossRefGoogle Scholar
  42. Naeem S, Wright JP (2003) Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecol Lett 6:567–579CrossRefGoogle Scholar
  43. Naeem S, Thompson LJ, Lawton JH, Woodfin RM (1994) Declining biodiversity can alter the performance of ecosystems. Nature 368:734–736CrossRefGoogle Scholar
  44. Poff NL (1997) Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J North Am Benthol Soc 16:391–409CrossRefGoogle Scholar
  45. Polis GA, Strong DR (1996) Food web complexity and community dynamics. Am Nat 147:813–845CrossRefGoogle Scholar
  46. Pringle CM, Triska FJ (1996) Effects of nutrient enrichment on periphyton. In: Hauer FR, Lamberti GA (eds) Methods in stream ecology. Academic Press, San Diego, pp 607–623Google Scholar
  47. Rosemond AD, Pringle CM, Ramirez A, Paul MJ (2001) A test of top–down and bottom–up control in a detritus-based food web. Ecology 82:2279–2293CrossRefGoogle Scholar
  48. Schmid B, Hector A, Huston MA, Inchausti P, Nijs I, Leadley PW, Tilman D (2002) The design and analysis of biodiversity experiments. In: Loreau N, Naeem NS, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, pp 61–75Google Scholar
  49. Schmitz OJ, Krivan V, Ovadia O (2004) Trophic cascades: the primacy of trait-mediated indirect interactions. Ecol Lett 7:153–163CrossRefGoogle Scholar
  50. Spivak AC, Canuel EA, Duffy JE, Richardson JP (2007) Top–down and bottom–up controls on sediment organic matter composition in an experimental seagrass ecosystem. Limnol Oceanogr 52:2595–2607CrossRefGoogle Scholar
  51. Spooner DE, Vaughn CC (2006) Context-dependent effects of freshwater mussels on the benthic community. Freshw Biol 5:1016–1024 Corrigendum 1188CrossRefGoogle Scholar
  52. Spooner DE, Vaughn CC (2008) A trait-based approach to species’ roles in stream ecosystems: climate change, community structure, and material cycling. Oecologia 158:307–317PubMedCrossRefGoogle Scholar
  53. Spooner DE, Vaughn CC (2011) Species’ traits, dominance, and environmental gradients interact to govern primary production in freshwater mussel communities. Oikos (in press). doi: 10.1111/j.1600-0706.2011.19380.x
  54. Srivastava DS, Bell T (2009) Reducing horizontal and vertical diversity in a foodweb triggers extinctions and impacts functions. Ecol Lett 12:1016–1028PubMedCrossRefGoogle Scholar
  55. Srivastava DS, Cardinale BJ, Downing AL, Duffy JE, Jouseau C, Sankaran M, Wright JP (2009) Diversity has stronger top–down than bottom–up effects on decomposition. Ecology 90:1073–1083PubMedCrossRefGoogle Scholar
  56. Symstad AJ, Tilman D, Wilson J, Knops JMH (1998) Species loss and ecosystem functioning: effects of species identity and community composition. Oikos 81:389–397CrossRefGoogle Scholar
  57. Tilman D (1994) Competition and biodiversity in spatially structured habitats. Ecology 75:2–16CrossRefGoogle Scholar
  58. Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845PubMedCrossRefGoogle Scholar
  59. Vaughn CC, Spooner DE, Galbraith HS (2007) Context-dependent species identity effects within a functional group of filter-feeding bivalves. Ecology 88:1654–1662PubMedCrossRefGoogle Scholar
  60. Vaughn CC, Nichols SJ, Spooner DE (2008) Community and foodweb ecology of freshwater mussels. J North Am Benthol Soc 27:41–55CrossRefGoogle Scholar
  61. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of earth’s ecosystems. Science 277:494–499CrossRefGoogle Scholar
  62. Walker BH (1992) Biodiversity and ecological redundancy. Conserv Biol 6:18–23CrossRefGoogle Scholar
  63. Worm B, Duffy JE (2003) Biodiversity, productivity and stability in real food webs. Trends Ecol Evol 18:629–632CrossRefGoogle Scholar
  64. Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Selkow KA, Stachowicz JJ, Watson R (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Daniel E. Spooner
    • 1
    • 2
  • Caryn C. Vaughn
    • 1
    • 3
  • Heather S. Galbraith
    • 1
    • 2
  1. 1.Oklahoma Biological Survey and Department of ZoologyUniversity of OklahomaNormanUSA
  2. 2.Northern Appalachian Research LaboratoryUnited States Geological SurveyWellsboroUSA
  3. 3.Graduate Program in Ecology and Evolutionary BiologyUniversity of OklahomaNormanUSA

Personalised recommendations