, Volume 168, Issue 1, pp 61–71 | Cite as

Local retention, dispersal and fluctuating connectivity among populations of a coral reef fish

  • J. Derek Hogan
  • Roger J. Thiessen
  • Peter F. Sale
  • Daniel D. Heath
Population ecology - Original Paper


The persistence and resilience of marine populations in the face of disturbances is directly affected by connectivity among populations. Thus, understanding the magnitude and pattern of connections among populations and the temporal variation in these patterns is critical for the effective management and conservation of marine species. Despite recent advances in our understanding of marine connectivity, few empirical studies have directly measured the magnitude or pattern of connections among populations of marine fishes, and none have explicitly investigated temporal variation in demographic connectivity. We use genetic assignment tests to track the dispersal of 456 individual larval fishes to quantify the extent of connectivity, dispersal, self-recruitment and local retention within and among seven populations of a coral reef fish (Stegastes partitus) over a three-year period. We found that some larvae do disperse long distances (~200 km); however, self-recruitment was a regular phenomenon. Importantly, we found that dispersal distances, self-recruitment, local retention and the pattern of connectivity varied significantly among years. Our data highlight the unpredictable nature of connectivity, and underscore the need for more, temporally replicated, empirical measures of connectivity to inform management decisions.


Local retention Self-recruitment Dispersal kernel Connectivity matrix Metapopulation Marine protected areas 

Supplementary material

442_2011_2058_MOESM1_ESM.doc (136 kb)
Supplementary material 1 (DOC 136 kb)


  1. Almany GR, Berumen ML, Thorrold SR, Planes S, Jones GP (2007) Local replenishment of coral reef fish populations in a marine reserve. Science 316:742–744. doi:10.1126/science.1140597 PubMedCrossRefGoogle Scholar
  2. Becker BJ, Levin LA, Fodrie FJ, McMillan PA (2007) Complex larval connectivity patterns among marine invertebrate populations. Proc Natl Acad Sci USA 104:3267–3272. doi:10.1073/pnas.0611651104 Google Scholar
  3. Berry O, Tocher MD, Sarre SD (2004) Can assignment tests measure dispersal? Mol Ecol 13:551–561. doi:10.1046/j.1365-294X.2004.02081.x PubMedCrossRefGoogle Scholar
  4. Bjornstad G, Roed KH (2002) Evaluation of factors affecting individual assignment precision using microsatellite data from horse breeds and simulated breed crosses. Anim Gen 33:264–270. doi:10.1046/j.1365-2052.2002.00868.x CrossRefGoogle Scholar
  5. Botsford LW et al (2009) Connectivity and resilience of coral reef metapopulations in marine protected areas: matching empirical efforts to predictive needs. Coral Reefs 28:327–337. doi:10.1007/s00338-009-0466-z CrossRefGoogle Scholar
  6. Bradbury IR, Laurel B, Snelgrove PVR, Bentzen P, Campana SE (2008) Global patterns in marine dispersal estimates: the influence of geography, taxonomic category and life history. Proc R Soc Lond B 275:1803–1809. doi:10.1098/rspb.2008.0216 CrossRefGoogle Scholar
  7. Carlsson J (2008) Effects of null alleles on assignment testing. J Hered 99:616–623. doi:10.1093/jhered/esn048 PubMedCrossRefGoogle Scholar
  8. Christie MR, Johnson DW, Stallings CD, Hixon MA (2010) Self-recruitment and sweepstakes reproduction amid extensive gene flow in a coral-reef fish. Mol Ecol 19:1042–1057. doi:10.1111/j.1365-294X.2010.04524.x PubMedCrossRefGoogle Scholar
  9. Cowen RK, Paris CB, Srinivasan A (2006) Scaling of connectivity in marine populations. Science 311:522–527. doi:10.1126/science.1122039 PubMedCrossRefGoogle Scholar
  10. Eckert GL (2003) Effects of the planktonic period on marine population fluctuations. Ecology 84:372–383. doi:10.1890/0012-9658(2003)084[0372:EOTPPO]2.0.CO;2 CrossRefGoogle Scholar
  11. Elphinstone MS, Hinten GN, Anderson MJ, Nock CJ (2003) An inexpensive and high-throughput procedure to extract and purify total genomic DNA for population studies. Mol Ecol Notes 3:317–320. doi:10.1046/j.1471-8286.2003.00397.x CrossRefGoogle Scholar
  12. Fisher R, Bellwood DR (2003) Undisturbed swimming behaviour and nocturnal activity of coral reef fish larvae. Mar Ecol Prog Ser 263:177–188. doi:10.3354/meps263177 CrossRefGoogle Scholar
  13. Fogarty MJ, Botsford LW (2007) Population connectivity and spatial management of marine fishes. Oceanogr 20:112–123CrossRefGoogle Scholar
  14. Hedgecock D (1994) Temporal and spatial genetic structure of marine animal populations in the California Current. Calif Coop Ocean Fish Inv 35:73–81Google Scholar
  15. Hepburn RI, Sale PF, Dixon B, Heath DD (2009) Genetic structure of juvenile cohorts of bicolor damselfish (Stegastes partitus) along the Mesoamerican barrier reef: chaos through time. Coral Reefs 28:277–288. doi:10.1007/s00338-008-0423-2 CrossRefGoogle Scholar
  16. Hogan JD, Thiessen RJ, Heath DD (2010) Variability in connectivity indicated by chaotic genetic patchiness within and among populations of a marine fish. Mar Ecol Prog Ser 417:263–275. doi:10.3354/meps08793 CrossRefGoogle Scholar
  17. Holland MD, Hastings A (2008) Strong effect of dispersal network structure on ecological dynamics. Nature 456:792–794. doi:10.1038/nature07395 PubMedCrossRefGoogle Scholar
  18. Hutchings JA (2000) Collapse and recovery of marine fishes. Nature 406:882–885. doi:10.1038/35022565 PubMedCrossRefGoogle Scholar
  19. Jackson JBC et al (2001) Historical overfishing and the recent collapse for coastal ecosystems. Science 293:629–638. doi:10.1126/science.1059199 PubMedCrossRefGoogle Scholar
  20. Johnson MS, Black R (1984) The Wahlund effect and the geographical scale of variation in the intertidal limpet Siphonaria sp. Mar Biol 79:295–302CrossRefGoogle Scholar
  21. Jones GP, Milicich MJ, Emslie MJ, Lunow C (1999) Self-recruitment in a coral reef fish population. Nature 402:802–804. doi:10.1038/45538 CrossRefGoogle Scholar
  22. Jones GP, Planes S, Thorrold SR (2005) Coral reef fish larvae settle close to home. Curr Biol 15:1314–1318. doi:10.1016/j.cub.2005.06.061 PubMedCrossRefGoogle Scholar
  23. Jones GP, Srinivasan M, Almany GR (2007) Population connectivity and conservation of marine biodiversity. Oceanogr 20:100–111CrossRefGoogle Scholar
  24. Jones GP et al (2009) Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges. Coral Reefs 28:307–325. doi:10.1007/s00338-009-0469-9 CrossRefGoogle Scholar
  25. Larson RJ, Julian RM (1999) Spatial and temporal genetic patchiness in marine populations and their implications for fisheries management. Cal Coop Ocean Fish 40:94–99Google Scholar
  26. Leis JM (1991) The pelagic stage of reef fishes: the larval biology of coral reef fishes. In: Sale PF (ed) The ecology of fishes on coral reefs. Academic, San Diego, pp 183–230Google Scholar
  27. Levin LA (2006) Recent progress in understanding larval dispersal: new directions and digressions. Integr Comp Biol 46:282–297. doi:10.1093/icb/024 PubMedCrossRefGoogle Scholar
  28. Miller JA, Shanks AL (2004) Evidence for limited larval dispersal in black rockfish (Sebastes melanops): implications for population structure and marine reserve design. Can J Fish Aquat Sci 61:1723–1735. doi:10.1139/f04-111 CrossRefGoogle Scholar
  29. Myrberg AA (1972) Ethology of the bicolor damselfish, Eupomacentrus partitus: a comparative analysis of laboratory and field behaviour. Anim Behav Monogr 5:197–283Google Scholar
  30. Ospina-Guerrero SP, Landinez-Garcia RM, Rodriguez-Castro DJ, Arango R, Marquez E (2008) Genetic connectivity of Stegastes partitus in the south Caribbean evidenced by microsatellite analysis. Cien Mar 34:155–163Google Scholar
  31. Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65. doi:10.1046/j.1365-294X.2003.02008.x PubMedCrossRefGoogle Scholar
  32. Planes S, Jones GP, Thorrold SR (2009) Larval dispersal connects fish populations in a network of marine protected areas. Proc Natl Acad Sci USA 106:5693–5697. doi:10.1073/pnas.0808007106 Google Scholar
  33. Purcell JFH, Cowen RK, Hughes CR, Williams DA (2009) Population structure in a common Caribbean coral-reef fish: implications for larval dispersal and early life history traits. J Fish Biol 74:403–417. doi:10.1111/j.1095-8649.2008.02078.x PubMedCrossRefGoogle Scholar
  34. Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201Google Scholar
  35. Robertson DR, Green DG, Victor BC (1988) Temporal coupling of production and recruitment of larvae of a Caribbean reef fish. Ecology 69:370–381CrossRefGoogle Scholar
  36. Salas E, Molina-Urena H, Walter RP, Heath DD (2010) Local and regional genetic connectivity in a Caribbean coral reef fish. Mar Biol 157:437–445. doi:10.1007/s00227-009-1330-y CrossRefGoogle Scholar
  37. Sale PF (1980) The ecology of fishes on coral reefs. Oceanogr Mar Biol Ann Rev 18:367–421Google Scholar
  38. Sale PF et al (2005) Critical science gaps impede use of no-take fishery reserves. Trends Ecol Evol 20:74–80. doi:10.1016/j.tree.2004.11.007 PubMedCrossRefGoogle Scholar
  39. Selkoe KA, Gaines SD, Caselle JE, Warner RR (2006) Current shifts and kin aggregation explain genetic patchiness in fish recruits. Ecology 87:3082–3094. doi:10.1890/0012-9658(2006)87[3082:CSAKAE]2.0.CO;2 PubMedCrossRefGoogle Scholar
  40. Shima JS, Swearer SE (2009) Larval quality is shaped by matrix effects: implications for connectivity in a marine metapopulation. Ecology 90:1255–1267. doi:10.1890/08-0029.1 PubMedCrossRefGoogle Scholar
  41. Soto I et al (2009) Physical connectivity in the Mesoamerican barrier reef system inferred from 9 years of ocean color observations. Coral Reefs 28:415–425. doi:10.1007/s00338-009-0465-0 CrossRefGoogle Scholar
  42. Swearer SE, Caselle JE, Lea DW, Warner RR (1999) Larval retention and recruitment in an island population of a coral reef fish. Nature 402:799–802. doi:10.1038/45533 CrossRefGoogle Scholar
  43. Tang LQ, Sheng JY, Hatcher BG, Sale PF (2006) Numerical study of circulation, dispersion, and hydrodynamic connectivity of surface waters on the Belize shelf. J Geophys Res Oceans 111. doi:10.1029/2005JC002930
  44. Thiessen RJ, Heath DD (2007) Characterization of one trinucleotide and six dinucleotide microsatellite markers in bicolor damselfish, Stegastes partitus, a common coral reef fish. Conserv Genet 8:983–985. doi:10.1007/s10592-006-9207-9 CrossRefGoogle Scholar
  45. Thorrold SR et al (2002) Quantifying larval retention and connectivity in marine populations with artificial and natural markers. Bull Mar Sci 70:291–308Google Scholar
  46. Villegas-Sanchez CA, Rivera-Madrid R, Arias-Gonzalez JE (2010) Small scale genetic connectivity of bicolor damselfish (Stegastes partitus) recruits in Mexican Caribbean reefs. Coral Reefs 29:1023–1033. doi:10.1007/s00338-010-0643-0 CrossRefGoogle Scholar
  47. Walter RP, Aykanat T, Kelly DW, Shrimpton JM, Heath DD (2009) Gene flow increases temporal stability of Chinook salmon (Oncorhynchus tshawytscha) populations in the Upper Fraser River, British Columbia, Canada. Can J Fish Aquat Sci 66:167–176. doi:10.1139/F08-201 CrossRefGoogle Scholar
  48. Waples RS, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15:1419–1439. doi:10.1111/j.1365-294X.2006.020890.x PubMedCrossRefGoogle Scholar
  49. Wellington GM, Victor BC (1989) Planktonic larval duration of one hundred species of Pacific and Atlantic damselfishes (Pomacentridae). Mar Biol 101:557–567CrossRefGoogle Scholar
  50. Williams DA, Purcell J, Hughes CR, Cowen RK (2003) Polymorphic microsatellite loci for population studies of the bicolor damselfish, Stegastes partitus (Pomacentridae). Mol Ecol Notes 3:547–549. doi:10.1046/j.1471-8286.2003.00506.x CrossRefGoogle Scholar
  51. Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–158PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • J. Derek Hogan
    • 1
    • 3
  • Roger J. Thiessen
    • 1
  • Peter F. Sale
    • 2
  • Daniel D. Heath
    • 1
  1. 1.Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorCanada
  2. 2.Institute for Water, Environment and HealthUnited Nations UniversityHamiltonCanada
  3. 3.Center for LimnologyUniversity of Wisconsin–MadisonMadisonUSA

Personalised recommendations