, Volume 167, Issue 4, pp 1177–1184 | Cite as

Simulated nitrogen deposition affects wood decomposition by cord-forming fungi

  • Daniel P. Bebber
  • Sarah C. Watkinson
  • Lynne Boddy
  • Peter R. Darrah
Global change ecology - Original Paper


Anthropogenic nitrogen (N) deposition affects many natural processes, including forest litter decomposition. Saprotrophic fungi are the only organisms capable of completely decomposing lignocellulosic (woody) litter in temperate ecosystems, and therefore the responses of fungi to N deposition are critical in understanding the effects of global change on the forest carbon cycle. Plant litter decomposition under elevated N has been intensively studied, with varying results. The complexity of forest floor biota and variability in litter quality have obscured N-elevation effects on decomposers. Field experiments often utilize standardized substrates and N-levels, but few studies have controlled the decay organisms. Decomposition of beech (Fagus sylvatica) blocks inoculated with two cord-forming basidiomycete fungi, Hypholoma fasciculare and Phanerochaete velutina, was compared experimentally under realistic levels of simulated N deposition at Wytham Wood, Oxfordshire, UK. Mass loss was greater with P. velutina than with H. fasciculare, and with N treatment than in the control. Decomposition was accompanied by growth of the fungal mycelium and increasing N concentration in the remaining wood. We attribute the N effect on wood decay to the response of cord-forming wood decay fungi to N availability. Previous studies demonstrated the capacity of these fungi to scavenge and import N to decaying wood via a translocating network of mycelium. This study shows that small increases in N availability can increase wood decomposition by these organisms. Dead wood is an important carbon store and habitat. The responses of wood decomposers to anthropogenic N deposition should be considered in models of forest carbon dynamics.


Basidiomycete fungi Carbon cycle Forest litter decomposition Wood decay Nitrogen cycle 



The authors thank Mike Morecroft, Michele Taylor, George Tordoff, and Juliet Hynes. The study was funded by NERC grant NER/A/S/2002/882.

Supplementary material

442_2011_2057_MOESM1_ESM.doc (826 kb)
Supplementary material 1 (DOC 826 kb)


  1. Aber JD, Goodale CL, Ollinger SC, Smith M-L, Magill AH, Martin ME, Hallett RA, Stoddard JL (2003) Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience 53:375–389. doi: 10.1641/0006-3568(2003)053[0375:INDATN]2.0.CO;2 CrossRefGoogle Scholar
  2. Bebber DP, Cole WG, Thomas SC, Balsillie D, Duinker P (2004) Effects of retention harvests on structure of old-growth Pinus strobus L stands in Ontario. For Ecol Manag 205:91–103. doi: 10.1016/j.foreco.2004.10.048 CrossRefGoogle Scholar
  3. Berg B, Laskowski R (2005) Litter decomposition: a guide to carbon and nutrient turnover. Adv Ecol Res 38:1–428CrossRefGoogle Scholar
  4. Boddy L (1999) Saprotrophic cord-forming fungi: Meeting the challenge of heterogeneous environments. Mycologia 91:13–32CrossRefGoogle Scholar
  5. Bolton RG, Boddy L (1993) Characterization of the spatial aspects of foraging mycelial cord systems using fractal geometry. Mycol Res 97:762–768. doi: 10.1016/S0953-7562(09)80158-5 CrossRefGoogle Scholar
  6. Boyle D (1998) Nutritional factors limiting the growth of Lentinula edodes and other white-rot fungi in wood. Soil Biol Biochem 30:817–823. doi: 10.1016/S0038-0717(97)00159-4 CrossRefGoogle Scholar
  7. Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644Google Scholar
  8. Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81:2359–2365. doi: 10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2 CrossRefGoogle Scholar
  9. Currie WS (1999) The responsive C and N biogeochemistry of the temperate forest floor. Trends Ecol Evol 14:316–320. doi: 10.1016/S0169-5347(99)01645-6 PubMedCrossRefGoogle Scholar
  10. Dise NB, Gundersen P (2004) Forest ecosystem responses to atmospheric pollution: linking comparative with experimental studies. Water Air Soil Pollut Focus 4:207–220. doi: 10.1023/B:WAFO.0000028355.20005.c5 CrossRefGoogle Scholar
  11. Dise NB, Matzner E, Gundersen P (1998) Synthesis of nitrogen pools and fluxes from European forest ecosystems. Water Air Soil Pollut 105:143–154. doi: 10.1023/A:1005068501864 CrossRefGoogle Scholar
  12. Downs MR, Nadelhoffer KJ, Melillo JM, Aber JD (1996) Immobilization of a 15N-labeled nitrate addition by decomposing forest litter. Oecologia 105:141–150. doi: 10.1007/BF00328539 Google Scholar
  13. Dowson CG, Rayner ADM, Boddy L (1988) Inoculation of mycelial cord-forming basidiomycetes into woodland soil and litter. II Resource capture and persistence. New Phytol 109:343–349. doi: 10.1111/j.1469-8137.1988.tb04204.x CrossRefGoogle Scholar
  14. Dowson CG, Springham P, Rayner ADM, Boddy L (1989) Resource relationships of foraging mycelial systems of Phanerochaete velutina and Hypholoma fasciculare in soil. New Phytol 111:501–509. doi: 10.1111/j.1469-8137.1989.tb00713.x CrossRefGoogle Scholar
  15. Entry JA, Backman CB (1995) Influence of carbon and nitrogen on cellulose and lignin degradation in forest soils. Can J For Res 25:1231–1236. doi: 10.1139/x95-135 CrossRefGoogle Scholar
  16. Eriksson K-E, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, New YorkGoogle Scholar
  17. Falkengren-Grerup U, Brunet J, Diekmann M (1998) Nitrogen mineralization in deciduous forest soils in gradients of soil acidity and deposition. Environ Pollut S1:415–420. doi: 10.1016/S0269-7491(98)80062-6 CrossRefGoogle Scholar
  18. Fenn ME, Dunn PH (1989) Litter decomposition across an air-pollution gradient in the San Bernardino Mountains. Soil Sci Soc Am J 53:1560–1567. doi: 10.2136/sssaj1989.03615995005300050044x CrossRefGoogle Scholar
  19. Fenn ME, Poth MA, Aber JD, Baron JS, Bormann BT, Johnson DW et al (1998) Nitrogen excess in North American ecosystems: predisposing factors ecosystem responses and management strategies. Ecol Appl 8:706–733. doi: 10.1890/1051-0761(1998)008[0706:NEINAE]2.0.CO;2 CrossRefGoogle Scholar
  20. Ferreira V, Gulis V, Graça MAS (2006) Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. Oecologia 149:718–729. doi: 10.1007/s00442-006-0478-0 PubMedCrossRefGoogle Scholar
  21. Findlay WPK (1934) Studies in the physiology of wood-destroying fungi. I. The effect of nitrogen content upon the rate of decay of timber. Ann Bot 48:109–117Google Scholar
  22. Fog K (1988) The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev Cambridge Philos Soc 63:433–462. doi: 10.1111/j.1469-185X.1988.tb00725.x CrossRefGoogle Scholar
  23. Freedman B, Zelazny V, Beaudette D (1996) Biodiversity implications of changes in the quantity of dead organic matter in managed forests. Environ Rev 4:238–265. doi: 10.1139/a96-013 CrossRefGoogle Scholar
  24. Frey SD, Knorr M, Parrent JL, Simpson RT (2004) Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. For Ecol Manag 196:159–171. doi: 10.1016/j.foreco.2004.03.018 CrossRefGoogle Scholar
  25. Gallo M, Amonette R, Lauber C, Sinsabaugh RL, Zak DR (2004) Microbial community structure and oxidative enzyme activity in nitrogen-amended north temperate forest soils. Microb Ecol 48:218–229. doi: 10.1007/s00248-003-9001-x PubMedCrossRefGoogle Scholar
  26. Grove S, Meggs J (2003) Coarse woody debris biodiversity and management: a review with particular reference to Tasmanian wet eucalypt forests. Aust For 66:258–272Google Scholar
  27. Gulis V, Rosemond AD, Suberkropp K, Weyers HS, Benstead JP (2004) Effects of nutrient enrichment on the decomposition of wood and associated microbial activity in streams. Freshw Biol 49:1437–1447. doi: 10.1111/j.1365-2427.2004.01281.x CrossRefGoogle Scholar
  28. Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD et al (1987) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–302. doi: 10.1016/S0065-2504(03)34002-4 CrossRefGoogle Scholar
  29. Hobbie SE (2005) Contrasting effects of substrate and fertilizer nitrogen on the early stages of litter decomposition. Ecosystems 8:644–656. doi: 10.1007/s10021-003-0110-7 CrossRefGoogle Scholar
  30. Jonsson BG, Kruys N, Ranius T (2005) Ecology of species living on dead wood—lessons for dead wood management. Silva Fenn 39:289–309Google Scholar
  31. Jurskis V (2005) Eucalypt decline in Australia and a general concept of tree decline and dieback. For Ecol Manag 215:1–20. doi: 10.1016/j.foreco.2005.04.026 CrossRefGoogle Scholar
  32. Kachlishvili E, Penninckx MJ, Tsiklauri N, Elisashvili V (2005) Effect of nitrogen source on lignocellulolytic enzyme production by white-rot basidiomycetes under solid-state cultivation. World J Microbiol Biotechnol 22:391–397. doi: 10.1007/s11274-005-9046-8 CrossRefGoogle Scholar
  33. Kirk KT, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505. doi: 10.1146/annurev.mi.41.100187.002341 PubMedCrossRefGoogle Scholar
  34. Knorr M, Frey SD, Curtis PS (2005) Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86:3252–3257. doi: 10.1890/05-0150 CrossRefGoogle Scholar
  35. Kuperman R (1999) Litter decomposition and nutrient dynamics in oak-hickory forests along a historic gradient of nitrogen and sulfur deposition. Soil Biol Biochem 31:237–244. doi: 10.1016/S0038-0717(98)00105-9 CrossRefGoogle Scholar
  36. Laiho R, Prescott CE (2004) Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: a synthesis. Can J For Res 34:763–777. doi: 10.1139/x03-241 CrossRefGoogle Scholar
  37. Langham SJ (1999) The impact of nitrogen deposition on natural and semi-natural ecosystems. Kluwer, DordrechtGoogle Scholar
  38. Lindenmayer DB, Franklin JF, Fischer J (2006) General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol Conserv 131:433–445. doi: 10.1016/j.biocon.2006.02.019 CrossRefGoogle Scholar
  39. Magill AH, Aber JD, Currie WS, Nadelhoffer KJ, Martin ME, McDowell WH et al (2004) Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. For Ecol Manag 196:7–28. doi: 10.1016/j.foreco.2004.03.033 CrossRefGoogle Scholar
  40. Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626. doi: 10.2307/1936780 CrossRefGoogle Scholar
  41. Micks P, Downs MR, Magill AH, Nadelhoffer KJ, Aber JD (2004) Decomposing litter as a sink for 15 N-enriched additions to an oak forest and a red pine plantation. For Ecol Manag 196:71–87. doi: 10.1016/j.foreco.2004.03.013 CrossRefGoogle Scholar
  42. Moorhead DL, Sinsabaugh RL (2006) A theoretical model of litter decay and microbial interaction. Ecol Monogr 76:151–174. doi: 10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2 CrossRefGoogle Scholar
  43. Rayner ADM, Boddy L (1988) Fungal decomposition of wood: its biology and ecology. Wiley, ChichesterGoogle Scholar
  44. Rodwell JS (1991) British plant communities volume 1—woodlands and scrub. Cambridge University Press, CambridgeGoogle Scholar
  45. Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002) The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34:1309–1315. doi: 10.1016/S0038-0717(02)00074-3 CrossRefGoogle Scholar
  46. Schmitz H, Kaufert F (1936) The effect of certain nitrogenous compounds on the rate of decay of wood. Am J Bot 23:635–638. doi: 10.1016/S0038-0717(02)00074-3 CrossRefGoogle Scholar
  47. Sinsabaugh RL, Carreiro MM, Repert DA (2002) Allocation of extracellular enzymatic activity in relation to litter composition N deposition and mass loss. Biogeochemistry 60:1–24. doi: 10.1023/A:1016541114786 CrossRefGoogle Scholar
  48. Sinsabaugh RL, Gallo ME, Lauber C, Waldrop MP, Zak DR (2005) Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition. Biogeochemistry 75:201–215. doi: 10.1007/s10533-004-7112-1 CrossRefGoogle Scholar
  49. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell, OxfordGoogle Scholar
  50. Tordoff GM, Boddy L, Jones TH (2008) Species-specific impacts of collembola grazing on fungal foraging ecology. Soil Biol Biochem 40:434–442. doi: 10.1016/j.soilbio.2007.09.006 CrossRefGoogle Scholar
  51. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW et al (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750. doi: 10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2 Google Scholar
  52. Vogt KA, Grier CC, Vogt DJ (1987) Production turnover and nutrient dynamics of above- and belowground detritus of World forests. Adv Ecol Res 15:303–377CrossRefGoogle Scholar
  53. Waldrop MP, Zak DR, Sinsabaugh RL (2004) Microbial community response to nitrogen deposition in northern forest ecosystems. Soil Biol Biochem 36:1443–1451. doi: 10.1016/j.soilbio.2004.04.023 CrossRefGoogle Scholar
  54. Watkinson S, Bebber DP, Darrah P, Fricker M, Tlalka M, Boddy L (2006) The role of wood decay fungi in the carbon and nitrogen dynamics of the forest floor. In: Gadd GM (ed) Fungi in biogeochemical cycles. Cambridge University Press, Cambridge, pp 151–158CrossRefGoogle Scholar
  55. Weedon JT, Cornwell WK, Cornelissen JHC, Zanne AE, Wirth C, Coomes DA (2009) Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecol Lett 12:45–56. doi: 10.1111/j.1461-0248.2008.01259.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Daniel P. Bebber
    • 1
  • Sarah C. Watkinson
    • 2
  • Lynne Boddy
    • 3
  • Peter R. Darrah
    • 2
  1. 1.Earthwatch InstituteOxfordUK
  2. 2.Department of Plant SciencesUniversity of OxfordOxfordUK
  3. 3.Cardiff School of BiosciencesCardiff UniversityCardiffUK

Personalised recommendations