Oecologia

, Volume 167, Issue 3, pp 635–646 | Cite as

Population density and phenotypic attributes influence the level of nematode parasitism in roe deer

  • Guillaume Body
  • Hubert Ferté
  • Jean-Michel Gaillard
  • Daniel Delorme
  • François Klein
  • Emmanuelle Gilot-Fromont
Population ecology - Original Paper

Abstract

The impact of parasites on population dynamics is well documented, but less is known on how host population density affects parasite spread. This relationship is difficult to assess because of confounding effects of social structure, population density, and environmental conditions that lead to biased among-population comparisons. Here, we analyzed the infestation by two groups of nematodes (gastro-intestinal (GI) strongyles and Trichuris) in the roe deer (Capreolus capreolus) population of Trois Fontaines (France) between 1997 and 2007. During this period, we experimentally manipulated population density through changes in removals. Using measures collected on 297 individuals, we quantified the impact of density on parasite spread after taking into account possible influences of date, age, sex, body mass, and weather conditions. The prevalence and abundance of eggs of both parasites in females were positively related to roe deer density, except Trichuris in adult females. We also found a negative relationship between parasitism and body mass, and strong age and sex-dependent patterns of parasitism. Prime-age adults were less often parasitized and had lower fecal egg counts than fawns or old individuals, and males were more heavily and more often infected than females. Trichuris parasites were not affected by weather, whereas GI strongyles were less present after dry and hot summers. In the range of observed densities, the observed effect of density likely involves a variation of the exposure rate, as opposed to variation in host susceptibility.

Keywords

Capreolus capreolus Density dependence Gastro-intestinal strongyles Trichuris Ungulates 

Notes

Acknowledgments

We are grateful to Guillaume Gayet, Sophie Rossi, Sonia Saïd and Anne Viallefont for helpful discussions. The authors would like to thank the ONCFS technical staff (Office National de la Chasse et de la Faune Sauvage) of Trois-Fontaines and Marie-Eve Terrier for their help in providing samples. The authors would also like to thank Jérôme Depaquit and Monique Boutry for their technical help in fecal egg examinations. Financial support for this study was provided by ONCFS.

Supplementary material

442_2011_2018_MOESM1_ESM.doc (36 kb)
Supplementary material 1 (DOC 35 kb)

References

  1. Afonso E, Thulliez P, Gilot-Fromont E (2006) Transmission of Toxoplasma gondii in an urban population of domestic cats (Felis catus). Int J Parasitol 36:1373–1382PubMedCrossRefGoogle Scholar
  2. Albon SD, Stien A, Irvine RJ, Langvatn R, Ropstad E, Halvorsen O (2002) The role of parasites in the dynamics of reindeer population. Proc R Soc Lond B 269:1625–1632CrossRefGoogle Scholar
  3. Altizer S, Dobson A, Hosseini P, Hudson P, Pascual M, Rohani P (2006) Seasonality and he dynamics of infectious diseases. Ecol Lett 9:467–484PubMedCrossRefGoogle Scholar
  4. Andersen R, Gaillard J-M, Liberg O, San José C (1998) Variation in life history parameters in roe deer. In: Andersen R, Duncan P, Linnell JDC (eds) The European roe deer: the biology of success. Scandinavian University Press, Norway, pp 285–308Google Scholar
  5. Andersen R, Gaillard J-M, Linnell J, Duncan P (2000) Factors affecting maternal care in an income breeder, the European roe deer. J Anim Ecol 69:672–682CrossRefGoogle Scholar
  6. Anderson RC (1992) Nematode parasites of vertebrates: their development and transmission. CABI, CambridgeGoogle Scholar
  7. Arneberg P (2002) Host population density and body mass as determinants of species richness in parasite communities: comparative analyses of directly transmitted nematodes of mammals. Ecography 25:88–94CrossRefGoogle Scholar
  8. Arneberg P, Skoping A, Read AF (1998) Parasite abundance, body size, life histories, and the energetic equivalence rule. Am Nat 151:497–513PubMedCrossRefGoogle Scholar
  9. Bogacsyk BA, Krohn WB, Gibbs HC (1993) Factors affecting Parelaphostrongylus tenuis in white-tailed deer (Odocoileus virginianus) from Maine. J Wildl Dis 29:266–272Google Scholar
  10. Bonenfant C, Gaillard J-M, Coulson T, Festa-Bianchet M, Loison A, Garel M, Loe LE, Blanchard P, Pettorelli N, Owen-Smith N, Du Toit J, Duncan P (2009) Empirical evidence of density-dependence in populations of large herbivores. Adv Ecol Res 41:313–357CrossRefGoogle Scholar
  11. Burnham K, Anderson D (2002) Model selection and multimodel inference: a practical information-theoretical approach. Springer, New YorkGoogle Scholar
  12. Clutton-Brock TH, Guinness FE, Albon SD (1982) Red deer. Behavior and ecology of two sexes. TUniversity of Chicago Press, ChicagoGoogle Scholar
  13. Combes C (1995) Interactions durables. Ecologie et évolution du parasitisme. Masson, ParisGoogle Scholar
  14. Coop RL, Kyriazakis I (2001) Nutrition–parasite interaction. Vet Parasitol 84:187–204CrossRefGoogle Scholar
  15. Estrada-Peña A, Acevedo P, Ruiz-Fons F, Gortázar C, de la Fuente J (2008) Evidence of importance of host habitat use in predicting the dilution effect of wild boar for deer exposure to Anaplasma spp. PloS One 3:e2999. doi:10.1371/journal.pone.0002999 PubMedCrossRefGoogle Scholar
  16. Ezenwa VO (2003) Interactions among host diet, nutritional status and gastrointestinal parasite infection in wild bovids. Int J Parasitol 34:535–542CrossRefGoogle Scholar
  17. Flerov KK (1952) Musk deer and deer, Fauna of the USSR, Mammals, I 2. USSR Academy of Sciences, Moscow (in Russia)Google Scholar
  18. Forbes M (2007) On sex differences in optimal immunity. Trends Ecol Evol 22:111–113PubMedCrossRefGoogle Scholar
  19. Gaillard J-M, Delorme D, Boutin J-M, Van Laere G, Boisaubert B, Pradel R (1993) Roe deer survival patterns: a comparative analysis of contrasting populations. J Anim Ecol 62:778–791CrossRefGoogle Scholar
  20. Gaillard J-M, Delorme D, Boutin JM, Van Laere G, Boisaubert B (1996) Body mass of roe deer fawns during winter in 2 contrasting populations. J Wildl Manag 60:29–36CrossRefGoogle Scholar
  21. Gaillard J-M, Festa-Bianchet M, Delorme D, Jorgenson J (2000) Body mass and individual fitness in female ungulates: bigger is not always better. Proc R Soc Lond B 267:471–477CrossRefGoogle Scholar
  22. Gaillard J-M, Duncan P, Delorme D, Van Laere G, Pettorelli N, Maillard D, Renaud G (2003) Effects of hurricane Lothar on the population dynamics of European roe deer. J Wildl Manag 67:767–773CrossRefGoogle Scholar
  23. Gortázar C, Acevedo P, Ruiz-Fons F, Vicente J (2006) Disease risks and overabundance of game species. Eur J Wildl Res 52:81–87CrossRefGoogle Scholar
  24. Grenfell BT, Gulland FMD (1995) Introduction: ecological impact of parasitism on wildlife host populations. Parasitology 111:S3–S14PubMedCrossRefGoogle Scholar
  25. Grenfell BT, Wilson K, Isham US, Boyd HEG, Dietz K (1995) Modelling patterns of parasite aggregation in natural populations: trichostrongylid nematode-ruminant interaction as a case study. Parasitology 111:S135–S151PubMedCrossRefGoogle Scholar
  26. Hayward A, Wilson A, Pilkington J, Pemberton J, Kruuk L (2009) Ageing in a variable habitat: environmental stress affects senescence in parasite resistance in St. Kilda Soay sheep. Proc R Soc Lond B 276:3477–3485CrossRefGoogle Scholar
  27. Hewison M, Gaillard J-M (2001) Phenotype quality and senescence affect different components of reproductive output in roe deer. J Anim Ecol 70:600–608CrossRefGoogle Scholar
  28. Hewison M, Gaillard J-M, Angibault J-M, Van Laere G, Vincent JP (2002) The influence of density on post-weaning growth in roe deer Capreolus capreolus fawns. J Zool 257:303–309CrossRefGoogle Scholar
  29. Hines AM, Ezenwa VO, Cross P, Rogerson JD (2007) Effect of supplemental feeding on gastrointestinal parasite infection in elk (Cervus elaphus): preliminary observations. Vet Parasitol 148:350–355PubMedCrossRefGoogle Scholar
  30. Holmstad PR, Hudson PJ, Skorping A (2005) The influence of a parasite community on the dynamics of a host population: a longitudinal study on willow ptarmigan and their parasites. Oikos 111:377–391CrossRefGoogle Scholar
  31. Hudson PJ, Dobson AP, Newborn D (1998) Prevention of population cycles by parasite removal. Science 282:2256–2258PubMedCrossRefGoogle Scholar
  32. Hurlbert H (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211CrossRefGoogle Scholar
  33. Irvine RJ, Corbishley H, Pilkington JG, Albon SD (2006) Low-level parasitic worm burdens may reduce body condition in free-ranging red deer (Cervus elaphus). Parasitology 133:465–475PubMedCrossRefGoogle Scholar
  34. Kjellander P, Hewison M, Liberg O, Angibault J-M, Bideau E, Cargnelutti B (2004) Experimental evidence for density-dependence of home-range size in roe deer (Capreolus capreolus L.): a comparison of two long-term studies. Oecologia 139:478–485PubMedCrossRefGoogle Scholar
  35. Koski KG, Scott ME (2001) Gastrointestinal nematodes, nutrition and immunity: breaking the negative spiral. Annu Rev Nutr 21:297–321PubMedCrossRefGoogle Scholar
  36. Lambin X, Krebs CJ, Moss R, Stenseth NC, Yoccoz NG (1999) Population cycles and parasitism. Science 286:2425CrossRefGoogle Scholar
  37. Larsen M, Roepstorff A (1999) Seasonal variation in development and survival of Ascaris suum and Trichuris suis eggs on pastures. Parasitology 119:209–220PubMedCrossRefGoogle Scholar
  38. Lutzelschwab CM, Fiel CA, Pedonesse SI, Najle R, Rodriguez E, Steffan PE, Fuse L, Iglesias L (2005) Arrested development of Ostertagia ostertagi: effect of the exposure of infective larvae to natural spring conditions of the Humid Pampa (Argentina). Vet Parasitol 127:253–262PubMedCrossRefGoogle Scholar
  39. Margolis L, Esch GW, Holmes JC, Kuris AM, Schad JA (1982) The use of ecological terms in parasitology (report of an ad hoc committee of the American Society of Parasitologists). J Parasitol 68:131–133CrossRefGoogle Scholar
  40. Martin LB, Weil ZM, Nelson RJ (2008) Seasonal changes in vertebrate immune activity: mediation by physiological trade-offs. Philos Trans R Soc Lond B 363:321–339CrossRefGoogle Scholar
  41. May RM, Anderson RM (1978) Regulation and stability of host–parasite population interactions, II. Destabilizing process. J Anim Ecol 47:249–267CrossRefGoogle Scholar
  42. Morellet N, Gaillard J-M, Hewison M, Ballon P, Boscardin Y, Duncan P, Klein F, Maillard D (2007) Indicators of ecological change: new tools for managing populations of large herbivores. J Appl Ecol 44:634–643CrossRefGoogle Scholar
  43. Pettorelli N, Gaillard J-M, Van Laere G, Duncan P, Kjellander P, Liberg O, Delorme D, Maillard D (2002) Variations in adult body mass in roe deer: the effects of population density at birth and of habitat quality. Proc R Soc Lond B 269:747–753CrossRefGoogle Scholar
  44. Pioz M, Loison A, Gauthier D, Gibert P, Jullien J-M, Artois M, Gilot-Fromont E (2008) Diseases and reproductive success in a wild mammal: example in the alpine chamois. Oecologia 155:691–704PubMedCrossRefGoogle Scholar
  45. Raynaud JP (1970) Etude de l’efficacité d’une technique de coproscopie quantitative pour le diagnostic de routine et le contrôle des infestations parasitaires des bovins, ovins, caprins, équins et porcins. Ann Parasitol 45:321–342Google Scholar
  46. Redpath M, Mougeot F, Leckie FM, Elston DA, Hudson PJ (2006) Testing the role of parasites in driving the cyclic population dynamics of a gamebird. Ecol Lett 9:410–418PubMedCrossRefGoogle Scholar
  47. Santín-Durán M, Alunda JM, Hoberg EP, de la Fuente C (2004) Abomasal parasites in wild sympatric cervids, red deer, Cervus elaphus and fallow deer, Dama dama, from three localities across central and western Spain: relationship to host density and park management. J Parasitol 90:1378–1386PubMedCrossRefGoogle Scholar
  48. Santín-Durán M, Alunda JM, Hoberg EP (2008) Age distribution and seasonal dynamics of abomasal helminths in wild red deer from central Spain. J Parasitol 94:1031–1037PubMedCrossRefGoogle Scholar
  49. Schauber EM, Storm DJ, Nielsen CK (2007) Effects of joint space use and group membership contact rates among white-tailed deer. J Wildl Manag 71:155–163CrossRefGoogle Scholar
  50. Schemper M (1990) The explained variation in proportional hazards regression. Biometrika 77:216–218CrossRefGoogle Scholar
  51. Short RV, Baladan E (1994) The differences between the sexes. Cambridge University Press, LondonGoogle Scholar
  52. Slomke AM, Lankester MW, Peterson WJ (1995) Infrapopulation dynamics of Parelaphostrongylus tenuis in white-tailed deer. J Wildl Dis 31:125–135PubMedGoogle Scholar
  53. Strandgaard M (1972) The roe deer (Capreolus capreolus) population at Kalo and the factors regulating its size. Dan Rev Game Biol 7:1–205Google Scholar
  54. Swinton J, Woolhouse MEJ, Bengon ME, Dobson AP, Ferroglio E, Grenfell BT, Guberti V, Hails RS, Heesterbeek JAP, Lavazza A, Roberts MG, White PJ, Wilson K (2002) Microparasite transmission and persistance. In: Hudson PJ, Rizzoli A, Grenfell BT, Heesterbeek H, Dobson AP (eds) The ecology of wildlife diseases. Oxford University Press, Oxford, pp 83–101Google Scholar
  55. Toigo C, Gaillard J-M, Van Laere G, Hewison M, Morellet N (2006) How does environmental variation influence body mass, body size, and body condition? Roe deer as a case study. Ecography 29:301–308CrossRefGoogle Scholar
  56. Tompkins DM, Dobson AP, Arneberg P, Begon ME, Cattadori IM, Greenman JV, Heesterbeek JAP, Hudson PJ, Newborn D, Pugliese A, Rizzoli AP, Rosa R, Rosso F, Wilson K (2002) Parasites and host population dynamics. In: Hudson PJ, Rizzoli A, Grenfell BT, Heesterbeek H, Dobson AP (eds) The ecology of wildlife diseases. Oxford University Press, Oxford, pp 45–62Google Scholar
  57. Vicente J, Hofle U, Garcia Fernandez-De-Mera I, Gortazar C (2007) The importance of parasite life history and host density in predicting the impact of infections in red deer. Oecologia 152:655–666PubMedCrossRefGoogle Scholar
  58. Yan J, Fine JP (2004) Estimating equations for association structures. Stat Med 23:859–880PubMedCrossRefGoogle Scholar
  59. Zuk M, McKean KA (1996) Sex differences in parasite infections: patterns and processes. Int J Parasitol 26:1009–1024PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Guillaume Body
    • 1
    • 2
  • Hubert Ferté
    • 3
  • Jean-Michel Gaillard
    • 1
  • Daniel Delorme
    • 4
  • François Klein
    • 4
  • Emmanuelle Gilot-Fromont
    • 1
    • 5
  1. 1.Université de Lyon, Université Lyon 1, UMR5558 Laboratoire de Biométrie et Biologie EvolutiveVilleurbanne CedexFrance
  2. 2.Department of BiologyConcordia UniversityMontrealCanada
  3. 3.JE 2533-USC ANSES « VECPAR » UFR de PharmacieUniversité de Reims Champagne-ArdenneReimsFrance
  4. 4.Centre National d’Etude et de Recherche Appliquées sur les Cervidés-SangliersOffice National de la Chasse et de la Faune SauvageBar-le-DucFrance
  5. 5.VetAgro Sup, Campus Vétérinaire de Lyon, Santé Publique VétérinaireUniversité de LyonMarcy l’EtoileFrance

Personalised recommendations