Oecologia

, Volume 167, Issue 1, pp 229–240 | Cite as

Fast food in ant communities: how competing species find resources

  • Jessica M. C. Pearce-Duvet
  • Martin Moyano
  • Frederick R. Adler
  • Donald H. FeenerJr.
Community ecology - Original Paper

Abstract

An understanding of foraging behavior is crucial to understanding higher level community dynamics; in particular, there is a lack of information about how different species discover food resources. We examined the effect of forager number and forager discovery capacity on food discovery in two disparate temperate ant communities, located in Texas and Arizona. We defined forager discovery capacity as the per capita rate of resource discovery, or how quickly individual ants arrived at resources. In general, resources were discovered more quickly when more foragers were present; this was true both within communities, where species identity was ignored, as well as within species. This pattern suggests that resource discovery is a matter of random processes, with ants essentially bumping into resources at a rate mediated by their abundance. In contrast, species that were better discoverers, as defined by the proportion of resources discovered first, did not have higher numbers of mean foragers. Instead, both mean forager number and mean forager discovery capacity determined discovery success. The Texas species used both forager number and capacity, whereas the Arizona species used only forager capacity. There was a negative correlation between a species’ prevalence in the environment and the discovery capacity of its foragers, suggesting that a given species cannot exploit both high numbers and high discovery capacity as a strategy. These results highlight that while forager number is crucial to determining time to discovery at the community level and within species, individual forager characteristics influence the outcome of exploitative competition in ant communities.

Keywords

Community ecology Forager density Forager discovery capacity Formicidae Resource discovery 

Notes

Acknowledgments

P. Wiescher assisted in the collection and discussion of these data. Gracious thanks to L. Gilbert, P. Schappert, and the University of Texas for access to our Texas sites. Work on our Arizona sites was kindly allowed by the Forest Service, the American Museum of Natural History Southwestern Research Station, and J. and V. Austen, owners of El Coronado Ranch. This work was supported by National Science Foundation grant DEB-0316524 to D.H. Feener, Jr. and F.R. Adler, and a National Science Foundation Graduate Research Fellowship and International Postdoctoral Research Fellowship to J.M.C. Pearce-Duvet. Our thanks also go to the anonymous reviewers that helped rebuild and refine this publication.

References

  1. Adler FR, Gordon DM (1992) Information collection and spread by networks of patrolling ants. Am Nat 140:373–400PubMedCrossRefGoogle Scholar
  2. Adler FR, LeBrun EG, Feener DF (2007) Maintaining diversity in an ant community: modeling, extending, and testing the dominance–discovery trade-off. Am Nat 169:323–333. doi: 10.1086/510759 Google Scholar
  3. Andersen AN (1991) Sampling communities of ground-foraging ants: pitfall catches compared with quadrat counts in an Australian tropical savanna. Aust Ecol 16:273–279. doi: 10.1111/j.1442-9993.1991.tb01054.x CrossRefGoogle Scholar
  4. Andersen AN (1992) Regulation of “momentary” diversity by dominant species in exceptionally rich ant communities of the Australian seasonal tropics. Am Nat 140:401–420. doi: 10.1086/285419 PubMedCrossRefGoogle Scholar
  5. Andersen AN (1997) Functional groups and patterns of organization in North American ant communities: a comparison with Australia. J Biogeogr 24:433–460. doi: 10.1111/j.1365-2699.1997.00137.x CrossRefGoogle Scholar
  6. Avgar T, Giladi I, Nathan R (2008) Linking traits of foraging animals to spatial patterns of plants: social and solitary ants generate opposing patterns of surviving seeds. Ecol Lett 11:224–234. doi: 10.1111/j.1461-0248.2007.01140.x PubMedCrossRefGoogle Scholar
  7. Beckerman AP, Petchey OL, Warren PH (2006) Foraging biology predicts food web complexity. Proc Natl Acad Sci USA 103:13745–13749. doi: 10.1073/pnas.0603039103 PubMedCrossRefGoogle Scholar
  8. Beckerman A, Petchey OL, Morin PJ (2010) Adaptive foragers and community ecology: linking individuals to communities and ecosystems. Funct Ecol 24:1–6. doi: 10.1111/j.1365-2435.2009.01673.x CrossRefGoogle Scholar
  9. Beckers R, Goss S, Deneubourg JL, Pasteels JM (1989) Colony size, communication, and ant foraging strategy. Psyche 96:239–256. doi: 10.1155/1989/94279 CrossRefGoogle Scholar
  10. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300. doi: 10.2307/2346101 Google Scholar
  11. Bestelmeyer BT (2000) The trade-off between thermal tolerance and behavioural dominance in a subtropical South American ant community. J Anim Ecol 69:998–1009. doi: 10.1046/j.1365-2656.2000.00455.x CrossRefGoogle Scholar
  12. Brown JS (1989) Desert rodent community structure: a test of four mechanisms of coexistence. Ecol Monogr 59:1–20. doi: 10.2307/2937289 CrossRefGoogle Scholar
  13. Brown JH, Davidson DW (1977) Competition between seed-eating rodents and ants in desert ecosystems. Science 196:880–882. doi: 10.1126/science.196.4292.880 PubMedCrossRefGoogle Scholar
  14. Brown JH, Davidson DW, Reichman OJ (1979) An experimental study of competition between seed-eating desert rodents and ants. Am Zool 19:1129–1143. doi: 10.1093/icb/19.4.1129 Google Scholar
  15. Brown JS, Kotler BP, Mitchell WA (1994) Foraging theory, patch use, and the structure of a Negev desert granivore community. Ecology 75:2286–2300. doi: 10.2307/1940884 CrossRefGoogle Scholar
  16. Calcagno V, Mouquet N, Jarne P, David P (2006) Co-existence in a metacommunity: the competition–colonization trade-off is not dead. Ecol Lett 9:897–907. doi: 10.1111/j.1461-0248.2006.00930.x Google Scholar
  17. Cerdá X, Retana J, Cros S (1997) Thermal disruption of transitive hierarchies in Mediterranean ant communities. J Anim Ecol 66:363–374. doi: 10.2307/5982 CrossRefGoogle Scholar
  18. Cerdá X, Retana J, Cros S (1998a) Critical thermal limits in Mediterranean ant species: trade-off between mortality risk and foraging performance. Funct Ecol 12:45–55. doi: 10.1046/j.1365-2435.1998.00160.x CrossRefGoogle Scholar
  19. Cerdá X, Retana J, Manzaneda A (1998b) The role of competition by dominants and temperature in the foraging of subordinate species in Mediterranean ant communities. Oecologia 117:404–412. doi: 10.1007/s004420050674 CrossRefGoogle Scholar
  20. Cox DR, Oakes D (1984) Analysis of survival data. Chapman & Hall, New YorkGoogle Scholar
  21. Davidson DW (1985) An experimental study of diffuse competition in harvester ants. Am Nat 125:500–506. doi: 10.1086/284358 CrossRefGoogle Scholar
  22. Davidson DW (1998) Resource discovery versus resource domination in ants: a functional mechanism for breaking the trade-off. Ecol Entomol 23:484–490. doi: 10.1046/j.1365-2311.1998.00145.x CrossRefGoogle Scholar
  23. Davidson DW, Inouye RS, Brown JH (1984) Granivory in a desert ecosystem: experimental evidence for indirect facilitation of ants by rodents. Ecology 65:1780–1786. doi: 10.2307/1937774 CrossRefGoogle Scholar
  24. Davidson DW, Samson DA, Inouye RS (1985) Granivory in the Chihuahuan Desert: interactions within and between trophic levels. Ecology 66:486–502. doi: 10.2307/1940397 CrossRefGoogle Scholar
  25. Dechaume-Moncharmont F-X, Dornhaus A, Houston AI, McNamara JM, Collins EJ, Franks NR (2005) The hidden cost of information in collective foraging. Proc R Soc Lond B 272:1689–1695. doi: 10.1098/rspb.2005.3137 CrossRefGoogle Scholar
  26. Emlen JM (1966) The role of time and energy in food preference. Am Nat 100:611. doi: 10.1086/282455 CrossRefGoogle Scholar
  27. Feener DH Jr (2000) Is the assembly of ant communities mediated by parasitoids? Oikos 90:79–88. doi: 10.1034/j.1600-0706.2000.900108.x CrossRefGoogle Scholar
  28. Feener DF Jr, Orr MR, Wackford KM, Longo JM, Gilbert LE, Benson WW (2008) Geographic variation in resource dominance, discovery, and parasitoid-mediated competition in the Brazilian range of the red imported fire ant (Solenopsis invicta). Ecology 89:1824–1836. doi: 10.1890/07-0659.1 PubMedCrossRefGoogle Scholar
  29. Fellers JH (1987) Interference and exploitation in a guild of woodland ants. Ecology 68:1466–1478. doi: 10.2307/1939230 CrossRefGoogle Scholar
  30. Fewell JH (1988) Energetic and time costs of foraging in harvester ants, Pogonomyrmex occidentalis. Behav Ecol Sociobiol 22:401–408. doi: 10.1007/BF00294977 CrossRefGoogle Scholar
  31. Garcia L (2003) Controlling the false discovery rate in ecological research. TREE 18:553–554. doi: 10.1016/j.tree.2003.08.011 Google Scholar
  32. Gordon DM (1992) How colony growth affects forager intrusion in neighboring harvester ant colonies. Behav Ecol Sociobiol 31:417–427. doi: 10.1007/BF00170609 CrossRefGoogle Scholar
  33. Gordon DM (1995) The expandable network of ant exploration. Anim Behav 50:995–1007. doi: 10.1016/0003-3472(95)80100-6 CrossRefGoogle Scholar
  34. Harkness RD, Maroudas NG (1985) Central place foraging by an ant (Cataglyphis bicolor Fab.): a model for searching. Anim Behav 33:916–928. doi: 10.1016/S0003-3472(85)80026-9 CrossRefGoogle Scholar
  35. Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, CambridgeGoogle Scholar
  36. Holway DA (1999) Competitive mechanisms underlying the displacement of native ants by the invasive Argentine ant. Ecology 80:238–251. doi: 10.1890/0012-9658(1999)080[0238:CMUTDO]2.0.CO;2 CrossRefGoogle Scholar
  37. Human KG, Gordon DM (1996) Exploitation and interference competition between the invasive Argentine ant, Linepithema humile, and native ant species. Oecologia 105:405–412. doi: 10.1007/BF00328744 CrossRefGoogle Scholar
  38. Jaffe K, Deneubourg JL (1992) On foraging, recruitment systems and optimum number of scouts in eusocial colonies. Insect Soc 39:201–213. doi: 10.1007/bf01249295 CrossRefGoogle Scholar
  39. Johnson LK, Hubbell SP, Feener DH Jr (1987) Defense of food supply by eusocial colonies. Am Zool 27:347–358. doi: 10.1093/icb/27.2.347 Google Scholar
  40. Jones SR, Phillips SA Jr (1990) Resource collecting abilities of Solenopsis invicta (Hymenoptera: Formicidae) compared with those of three sympatric Texas ants. Southwest Nat 35:416–422CrossRefGoogle Scholar
  41. Jones M, Mandelik Y, Dayan T (2001) Coexistence of temporally partitioned spiny mice: roles of habitat structure and foraging behavior. Ecology 82:2164–2176. doi: 10.1890/0012-9658(2001)082[2164:COTPSM]2.0.CO;2 CrossRefGoogle Scholar
  42. Jordan R, Blüthgen N (2007) No evidence for dominance-discovery trade-off among Formica pratensis colonies (Hymenoptera: Formicidae). Myrmecological News 10:7–10Google Scholar
  43. Kaspari M (1993a) Body size and microclimate use in Neotropical granivorous ants. Oecologia 96:500–507. doi: 10.1007/BF00320507 CrossRefGoogle Scholar
  44. Kaspari M (1993b) Removal of seeds from Neotropical frugivore droppings: ant responses to seed number. Oecologia 95:81–88. doi: 10.1093/icb/27.2.347 Google Scholar
  45. Kaspari M (2001) Taxonomic level, trophic biology and the regulation of local abundance. Global Ecol Biogeogr 10:229–244. doi: 10.1046/j.1466-822X.2001.00214.x CrossRefGoogle Scholar
  46. Kaspari M, Weiser MD (1999) The size–grain hypothesis and interspecific scaling in ants. Funct Ecol 13:530–538. doi: 10.1046/j.1365-2435.1999.00343.x Google Scholar
  47. Kaspari M, O’Donnell S, Kercher JR (2000) Energy, density, and contraints to species richness: ant assemblages along a productivity gradient. Am Nat 155:280–293PubMedCrossRefGoogle Scholar
  48. Kneitel JM, Chase JM (2004) Trade-offs in community ecology: linking spatial scales and species coexistence. Ecol Lett 7:69–80. doi: 10.1046/j.1461-0248.2003.00551.x CrossRefGoogle Scholar
  49. Kondoh M (2003) Foraging adaptation and the relationship between food-web complexity and stability. Science 299:1388–1391. doi: 10.1126/science.1079154 PubMedCrossRefGoogle Scholar
  50. Kotler BP, Brown JS (1988) Environmental heterogeneity and the coexistence of desert rodents. Ann Rev Ecol Sys 19:281–307. doi: 10.1146/annurev.es.19.110188.001433 CrossRefGoogle Scholar
  51. LeBrun EG (2005) Who is the top dog in ant communities? Resources, parasitoids, and multiple competitive hierarchies. Oecologia 142:643–652. doi: 10.1007/s00442-004-1763-4 PubMedCrossRefGoogle Scholar
  52. LeBrun EG, Feener DH Jr (2007) When trade-offs interact: the balance of terror enforces the dominance–discovery trade-off in a local ant assemblage. J Anim Ecol 76:58–64. doi: 10.1111/j.1365-2656.2006.01173.x Google Scholar
  53. Lessard JP, Dunn R, Sanders N (2009) Temperature-mediated coexistence in temperate forest ant communities. Insect Soc 56:149–156. doi: 10.1007/s00040-009-0006-4 CrossRefGoogle Scholar
  54. Lighton JRB, Feener DH Jr (1989) Water-loss rate and cuticular permeability in foragers of the desert ant Pogonomyrmex rugosus. Physiol Zool 62:1232–1256Google Scholar
  55. MacArthur RH, Pianka ER (1966) On optimal use of a patchy environment. Am Nat 100:603–609CrossRefGoogle Scholar
  56. Morrison LW (1996) Community organization in a recently assembled fauna: the case of Polynesian ants. Oecologia 107:243–256. doi: 10.1007/BF00327909 CrossRefGoogle Scholar
  57. Morrison LW (2000) Mechanisms of interspecific competition among an invasive and two native fire ants. Oikos 90:238–252. doi: 10.1034/j.1600-0706.2000.900204.x CrossRefGoogle Scholar
  58. Muenchow G (1986) Ecological use of failure time analysis. Ecology 67:246–250. doi: 10.2307/1938524 CrossRefGoogle Scholar
  59. Pearce-Duvet JMC, Feener DF Jr (2010) Resource discovery in ant communities: do food type and quantity matter? Ecol Entomol 35:549–556. doi: 10.1111/j.1365-2311.2010.01214.x CrossRefGoogle Scholar
  60. Pontin AJ (1963) Further considerations of competition and the ecology of the ants Lasius flavus (F.) and L. niger (L.). J Anim Ecol 32:565–574. doi: 10.2307/2608 CrossRefGoogle Scholar
  61. Pulliam HR (1985) Foraging efficiency, resource partitioning, and the coexistence of sparrow species. Ecology 66:1829–1836CrossRefGoogle Scholar
  62. R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  63. Roulston TH, Silverman J (2002) The effect of food size and dispersion pattern on retrieval rate by the Argentine ant, Linepithema humile (Hymenoptera: Formicidae). J Insect Behav 15:633–648. doi: 10.1023/A:1020791705673 CrossRefGoogle Scholar
  64. Santini G, Tucci L, Ottonetti L, Frizzi F (2007) Competition trade-offs in the organization of a Mediterranean ant assemblage. Ecol Entomol 32:319–326. doi: 10.1111/j.1365-2311.2007.00882.x CrossRefGoogle Scholar
  65. Sarty M, Abbott K, Lester P (2006) Habitat complexity facilitates coexistence in a tropical ant community. Oecologia 149:465–473. doi: 10.1007/s00442-006-0453-9 PubMedCrossRefGoogle Scholar
  66. Savolainen R, Vepsäläinen K (1988) A competition hierarchy among boreal ants: impact on resource partitioning and community structure. Oikos 51:135–155. doi: 10.2307/3565636 CrossRefGoogle Scholar
  67. Savolainen R, Vepsäläinen K, Wuorenrinne H (1989) Ant assemblages in the Taiga biome: testing the role of territorial wood ants. Oecologia 81:481–486. doi: 10.1007/BF00378955 Google Scholar
  68. Schmid-Hempel P (1987) Foraging characteristics of the desert ant Cataglyphis. In: Pasteels JM, Deneubourg JL (eds) From individual to collective foraging behavior in social insects: les Treilles Workshop. Birkhauser, Basel, pp 43–61Google Scholar
  69. Therneau T (2007) Package “survival:” survival analysis, including penalised likelihood (in R package version 2.32). R Foundation for Statistical Computing, ViennaGoogle Scholar
  70. Therneau TM, Grambsch PM, Pankratz VS (2003) Penalized survival models and frailty. J Comput Graph Stat 12:1–20. doi: 10.1198/1061860031365 CrossRefGoogle Scholar
  71. Tilman D (1982) Resource competition and community structure. Princeton University Press, PrincetonGoogle Scholar
  72. Traniello JFA (1983) Social organization and foraging success in Lasius neoniger (Hymenoptera: Formicidae): behavioural and ecological aspects of recruitment communication. Oecologia 59:94–100. doi: 10.1007/BF00388080 CrossRefGoogle Scholar
  73. Tschinkel WR (1988) Colony growth and the ontogeny of worker polymorphism in the fire ant, Solenopsis invicta. Behav Ecol Sociobiol 22:103–115. doi: 10.1007/BF00303545 CrossRefGoogle Scholar
  74. Vepsäläinen K, Pisarski B (1982) Assembly of island ant communities. Ann Zool Fenn 19:327–335Google Scholar
  75. Vincent T, Scheel D, Brown J, Vincent T (1996) Trade-offs and coexistence in consumer–resource models: it all depends on what and where you eat. Am Nat 148:1038–1058Google Scholar
  76. Weast RC (1973) Handbook of chemistry and physics. CRC Press, ClevelandGoogle Scholar
  77. Wehner R (1987) Spatial organisation of foraging behavior in individually searching desert ants, Cataglyphis (Sahara desert) and Ocymyrmex (Namib desert). In: Pasteels JM, Deneubourg JL (eds) From individual to collective foraging behavior in social insects: les Treilles Workshop. Birkhauser, Basel, pp 15–42Google Scholar
  78. Weier JA, Feener DH (1995) Foraging in the seed-harvester ant genus Pogonomyrmex: are energy costs important? Behav Ecol Sociobiol 36:291–300. doi: 10.1007/BF00167790 CrossRefGoogle Scholar
  79. Werner EE (1992) Individual behavior and higher-order species interactions. Am Nat 140:S5. doi: 10.1086/285395 CrossRefGoogle Scholar
  80. Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Ann Rev Ecol Syst 33:125–159. doi: 10.1146/annurev.ecolsys.33.010802.150452 CrossRefGoogle Scholar
  81. Wiescher PT, Pearce-Duvet JMC, Feener DH Jr. (2011) Environmental context alters ecological trade-offs controlling ant existence in a spatially heterogenous region. Ecol Entomol (accepted)Google Scholar
  82. Wilson EO (1975) Enemy specification in the alarm-recruitment system of an ant. Science 190:798–800. doi: 10.1126/science.1198097 PubMedCrossRefGoogle Scholar
  83. Wilson EO (1976) Behavioral discretization and the number of castes in an ant species. Behav Ecol Sociobiol 1:141–154. doi: 10.1007/BF00299195 CrossRefGoogle Scholar
  84. Wilson EO (1978) Division of labor in fire ants based on physical castes (Hymenoptera: Formicidae: Solenopsis). J Kansas Entomol Soc 51:615–636Google Scholar
  85. Ziv Y, Abramsky Z, Kotler B, Subach A (1993) Interference competition and temporal and habitat partitioning in two gerbil species. Oikos 66:237–246CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jessica M. C. Pearce-Duvet
    • 1
    • 2
  • Martin Moyano
    • 1
  • Frederick R. Adler
    • 1
  • Donald H. FeenerJr.
    • 1
  1. 1.Department of BiologyUniversity of UtahSalt Lake CityUSA
  2. 2.Estación Biológica de Doñana, CSICSevillaSpain

Personalised recommendations