Oecologia

, Volume 167, Issue 1, pp 11–19 | Cite as

The stomatal CO2 proxy does not saturate at high atmospheric CO2 concentrations: evidence from stomatal index responses of Araucariaceae conifers

  • Matthew Haworth
  • Caroline Elliott-Kingston
  • Jennifer C. McElwain
Physiological ecology - Original Paper

Abstract

The inverse relationship between the number of stomata on a leaf surface and the atmospheric carbon dioxide concentration ([CO2]) in which the leaf developed allows plants to optimise water-use efficiency (WUE), but it also permits the use of fossil plants as proxies of palaeoatmospheric [CO2]. The ancient conifer family Araucariaceae is often represented in fossil floras and may act as a suitable proxy of palaeo-[CO2], yet little is known regarding the stomatal index (SI) responses of extant Araucariaceae to [CO2]. Four Araucaria species (Araucaria columnaris, A. heterophylla, A. angustifolia and A. bidwillii) and Agathis australis displayed no significant relationship in SI to [CO2] below current ambient levels (~380 ppm). However, representatives of the three extant genera within the Araucariaceae (A. bidwillii, A. australis and Wollemia nobilis) all exhibited significant reductions in SI when grown in atmospheres of elevated [CO2] (1,500 ppm). Stomatal conductance was reduced and WUE increased when grown under elevated [CO2]. Stomatal pore length did not increase alongside reduced stomatal density (SD) and SI in the three araucariacean conifers when grown at elevated [CO2]. These pronounced SD and SI reductions occur at higher [CO2] levels than in other species with more recent evolutionary origins, and may reflect an evolutionary legacy of the Araucariaceae in the high [CO2] world of the Mesozoic Era. Araucariacean conifers may therefore be suitable stomatal proxies of palaeo-[CO2] during periods of “greenhouse” climates and high [CO2] in the Earth’s history.

Keywords

Araucaria Agathis Wollemia Stomatal index Palaeo-[CO2

Supplementary material

442_2011_1969_MOESM1_ESM.doc (29 kb)
Supplementary material 1 (DOC 29 kb)

References

  1. Aasamaa K, Sober A, Rahi M (2001) Leaf anatomical characteristics associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees. Aust J Plant Physiol 28:765–774Google Scholar
  2. Beerling DJ, Chaloner WG (1993) Evolutionary responses of stomatal density to global CO2 change. Biol J Linn Soc 48:343–353Google Scholar
  3. Beerling DJ, Royer DL (2002) Reading a CO2 signal from fossil stomata. New Phytol 153:387–397CrossRefGoogle Scholar
  4. Beerling DJ, Woodward FI (1996) Palaeo-ecophysiological perspectives on plant responses to global change. Trends Ecol Evol 11:20–23PubMedCrossRefGoogle Scholar
  5. Beerling DJ, Woodward FI (1997) Changes in land plant function over the phanerozoic: reconstructions based on the fossil record. Bot J Linn Soc 124:137–153Google Scholar
  6. Beerling DJ, McElwain JC, Osborne CP (1998) Stomatal responses of the ‘living fossil’ Ginkgo biloba L. to changes in atmospheric CO2 concentrations. J Exp Bot 49:1603–1607CrossRefGoogle Scholar
  7. Berner RA (2006) GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim Cosmochim Acta 70:5653–5664Google Scholar
  8. Brodribb TJ, Holbrook NM, Edwards EJ, Gutierrez MV (2003) Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant Cell Environ 26:443–450CrossRefGoogle Scholar
  9. Brodribb TJ, McAdam SAM, Jordan GJ, Feild TS (2009) Evolution of stomatal responsiveness to CO2 and optimization of water-use efficiency among land plants. New Phytol 183:839–847PubMedCrossRefGoogle Scholar
  10. Burrows GE, Bullock S (1999) Leaf anatomy of Wollemi pine (Wollemia nobilis, Araucariaceae). Aust J Bot 47:795–806CrossRefGoogle Scholar
  11. Cantrill DJ, Falcon-Lang HJ (2001) Cretaceous (Late Albian) coniferales of Alexander Island, Antarctica. 2. Leaves, reproductive structures and roots. Rev Palaeobot Palynol 115:119–145PubMedCrossRefGoogle Scholar
  12. Carpenter RJ, Pole M (1995) Eocene plant fossils from the Lefroy and Cowan Paleodrainages, Western Australia. Aust Syst Bot 8:1107–1154Google Scholar
  13. Casson SA, Franklin KA, Gray JE, Grierson CS, Whitelam GC, Hetherington AM (2009) Phytochrome B and PIF4 regulate stomatal development in response to light quantity. Curr Biol 19:229–234PubMedCrossRefGoogle Scholar
  14. Chen LQ, Li CS, Chaloner WG, Beerling DJ, Sun QG, Collinson ME, Mitchell PL (2001) Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change. Am J Bot 88:1309–1315PubMedCrossRefGoogle Scholar
  15. Dallimore W, Jackson AB, Harrison SG (1966) A handbook of the coniferae and ginkgoaceae, 4th edn. Edward Arnold, LondonGoogle Scholar
  16. Enright NJ, Hill RS (1995) Ecology of the southern conifers. Melbourne University Press, MelbourneGoogle Scholar
  17. Falcon-Lang HJ (2000) The relationship between leaf longevity and growth ring markedness in modern conifer woods and its implications for palaeoclimatic studies. Palaeogeogr Palaeoclimatol Palaeoecol 160:317–328CrossRefGoogle Scholar
  18. Farjon A (2008) A natural history of conifers. Timber, PortlandGoogle Scholar
  19. Franks PJ, Beerling DJ (2009) Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proc Natl Acad Sci USA 106:10343–10347PubMedCrossRefGoogle Scholar
  20. Franks PJ, Farquhar GD (2007) The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiol 143:78–87PubMedCrossRefGoogle Scholar
  21. Franks PJ, Drake PL, Beerling DJ (2009) Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus. Plant Cell Environ 32:1737–1748PubMedCrossRefGoogle Scholar
  22. Friedli H, Lotscher H, Oeschger H, Siegenthaler U, Stauffer B (1986) Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324:237–238CrossRefGoogle Scholar
  23. Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461CrossRefGoogle Scholar
  24. Harris TM (1979) The Yorkshire Jurassic flora V. coniferales. Trustees of the British Museum (Natural History), LondonGoogle Scholar
  25. Haworth M, Heath J, McElwain JC (2010) Differences in the response sensitivity of stomatal index to atmospheric CO2 among four genera of Cupressaceae conifers. Ann Bot 105:411–418PubMedCrossRefGoogle Scholar
  26. Hesselbo SP, Morgans-Bell HS, McElwain JC, Rees PM, Robinson SA, Ross CE (2003) Carbon-cycle perturbation in the middle Jurassic and accompanying changes in the terrestrial paleoenvironment. J Geol 111:259–276Google Scholar
  27. Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908PubMedCrossRefGoogle Scholar
  28. Jones WG, Hill KD, Allen JM (1995) Wollemia nobilis, a new living Australian genus species in the Araucariaceae. Telopea 6:173–176Google Scholar
  29. Jordan GJ (1995) Extinct conifers and conifer diversity in the early Pleistocene of Western Tasmania. Rev Palaeobot Palynol 84:375–387CrossRefGoogle Scholar
  30. Keeling CD, Whorf TP (2009) Atmospheric CO2 records from sites in the SIO air sampling network. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National LaboratoryGoogle Scholar
  31. Kershaw AP, McGlone MS (1995) The Quaternary history of the southern conifers. In: Enright NJ, Hill RS (eds) Ecology of the southern conifers. Smithsonian Institution Press, Washington, pp 30–63Google Scholar
  32. Kershaw P, Wagstaff B (2001) The southern conifer family Araucariaceae: history, status, and value for paleoenvironmental reconstruction. Annu Rev Ecol Syst 32:397–414CrossRefGoogle Scholar
  33. Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature 428:851–854PubMedCrossRefGoogle Scholar
  34. Kouwenberg LLR, McElwain JC, Kurschner WM, Wagner F, Beerling DJ, Mayle FE, Visscher H (2003) Stomatal frequency adjustment of four conifer species to historical changes in atmospheric CO2. Am J Bot 90:610–619PubMedCrossRefGoogle Scholar
  35. Kunzmann L (2007) Araucariaceae (Pinopsida): aspects in palaeobiogeography and palaeobiodiversity in the mesozoic. Zoologischer Anzeiger 246:257–277CrossRefGoogle Scholar
  36. Kürschner WM (1997) The anatomical diversity of recent and fossil leaves of the durmast oak (Quercus petraea Lieblein/Q. pseudocastanea Goeppert)—implications for their use as biosensors of palaeoatmospheric CO2 levels. Rev Palaeobot Palynol 96:1–30CrossRefGoogle Scholar
  37. Kürschner WM, van der Burgh J, Visscher H, Dilcher DL (1996) Oak leaves as biosensors of late Neogene and early Pleistocene paleoatmospheric CO2 concentrations. Mar Micropaleontol 27:299–312Google Scholar
  38. Kürschner WM, Wagner F, Visscher EH, Visscher H (1997) Predicting the response of leaf stomatal frequency to a future CO2-enriched atmosphere: constraints from historical observations. Geologische Rundschau 86:512–517CrossRefGoogle Scholar
  39. Kürschner WM, Stulen I, Wagner F, Kuiper PJC (1998) Comparison of palaeobotanical observations with experimental data on the leaf anatomy of durmast oak [Quercus petraea (Fagaceae)] in response to environmental change. Ann Bot 81:657–664CrossRefGoogle Scholar
  40. Kürschner WM, Kvacek Z, Dilcher DL (2008) The impact of miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proc Natl Acad Sci USA 105:449–453PubMedCrossRefGoogle Scholar
  41. McElwain JC, Chaloner WG (1995) Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Paleozoic. Ann Bot 76:389–395Google Scholar
  42. McElwain JC, Chaloner WG (1996) The fossil cuticle as a skeletal record of environmental change. Palaios 11:376–388CrossRefGoogle Scholar
  43. McElwain JC, Wade-Murphy J, Hesselbo SP (2005) Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals. Nature 435:479–482PubMedCrossRefGoogle Scholar
  44. Miller-Rushing AJ, Primack RB, Templer PH, Rathbone S, Mukunda S (2009) Long-term relationships among atmospheric CO2, stomata, and intrinsic water use efficiency in individual trees. Am J Bot 96:1779–1786PubMedCrossRefGoogle Scholar
  45. Oliveras I, Martīnez-Vilata J, Jimenez-Ortiz T, Lledó MJ, Escarre A, Piňol J (2003) Hydraulic properties of Pinus halepensis, Pinus pinea and Tetraclinis articulata in a dune ecosystem of eastern Spain. Plant Ecol 169:131–141CrossRefGoogle Scholar
  46. Page CN (1980) Leaf micromorphology in Agathis and its taxonomic implications. Plant Syst Evol 135:71–79CrossRefGoogle Scholar
  47. Passalia MG (2009) Cretaceous pCO2 estimation from stomatal frequency analysis of gymnosperm leaves of Patagonia, Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 273:17–24CrossRefGoogle Scholar
  48. Patreze CM, Tsai SM (2010) Intrapopulational genetic diversity of Araucaria angustifolia (Bertol.) Kuntze is different when assessed on the basis of chloroplast or nuclear markers. Plant Syst Evol 284:111–122CrossRefGoogle Scholar
  49. Poole I, Kürschner WM (1999) Stomatal density and index: the practise. In: Jones TP, Rowe NP (eds) Fossil plants and spores: modern techniques. Geological Society, London, pp 257–260Google Scholar
  50. Robinson JM (1994) Speculations on carbon dioxide starvation, late tertiary evolution of stomatal regulation and floristic modernization. Plant Cell Environ 17:345–354CrossRefGoogle Scholar
  51. Ryan MG, Yoder BJ (1997) Hydraulic limits to tree height and tree growth. Bioscience 47:235–242CrossRefGoogle Scholar
  52. Schoch PG, Zinsou C, Sibi M (1980) Dependence of the stomatal index on environmental-factors during stomatal differentiation in leaves of Vigna sinensis L.1. Effect of light intensity. J Exp Bot 31:1211–1216Google Scholar
  53. Setoguchi H, Osawa TA, Pintaud JC, Jaffre T, Veillon JM (1998) Phylogenetic relationships within Araucariaceae based on rbcL gene sequences. Am J Bot 85:1507–1516PubMedCrossRefGoogle Scholar
  54. Seward AC (1919) Fossil plants IV: Ginkgoales, Coniferales, Gnetales. Cambridge University Press, CambridgeGoogle Scholar
  55. Seward AC, Ford SO (1906) The Araucarieae, recent and extinct. Phil Trans Roy Soc London B 198:305–411Google Scholar
  56. Smith RY, Greenwood DR, Basinger JF (2010) Estimating paleoatmospheric pCO2 during the Early Eocene Climatic Optimum from stomatal frequency of Ginkgo, Okanagan Highlands, British Columbia, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 293:120–131CrossRefGoogle Scholar
  57. Stockey R (1994) Mesozoic Araucariaceae: morphology and systematic relationships. J Plant Res 107:493–502CrossRefGoogle Scholar
  58. Tajika E (1999) Carbon cycle and climate change during the Cretaceous inferred from a biogeochemical carbon cycle model. Island Arc 8:293–303CrossRefGoogle Scholar
  59. Tichà I (1982) Photosynthetic characteristics during ontogenesis of leaves. 7. Stomata density and sizes. Photosynthetica 16:375–471Google Scholar
  60. Wagner F, Below R, DeKlerk P, Dilcher DL, Joosten H, Kurschner WM, Visscher H (1996) A natural experiment on plant acclimation: lifetime stomatal frequency response of an individual tree to annual atmospheric CO2 increase. Proc Natl Acad Sci USA 93:11705–11708PubMedCrossRefGoogle Scholar
  61. Wagner F, Bohncke SJP, Dilcher DL, Kurschner WM, Geel Bv, Visscher H (1999) Century-scale shifts in early holocene atmospheric CO2 concentration. Science (Washington) 284:1971–1973CrossRefGoogle Scholar
  62. Wagner F, Visscher H, Kurschner WM, Dilcher DL (2007) Influence of ontogeny and atmospheric CO2 on stomata parameters of Osmunda regalis. Adv Angiosp Paleobot Paleoclim Reconstr 258:183–189Google Scholar
  63. Whitmore TC, Page CN (1980) Evolutionary implications of the distribution and ecology of the tropical conifer Agathis. New Phytol 84:407–416CrossRefGoogle Scholar
  64. Woodward FI (1987) Stomatal numbers are sensitive to increases in CO2 from preindustrial levels. Nature 327:617–618CrossRefGoogle Scholar
  65. Woodward FI, Bazzaz FA (1988) The responses of stomatal density to CO2 partial pressure. J Exp Bot 39:1771–1781CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Matthew Haworth
    • 1
  • Caroline Elliott-Kingston
    • 2
  • Jennifer C. McElwain
    • 2
  1. 1.CNR-Istituto di Biometeorologia (IBIMET)FirenzeItaly
  2. 2.School of Biology and Environmental ScienceUniversity College DublinDublin 4Ireland

Personalised recommendations