, Volume 166, Issue 4, pp 869–887 | Cite as

Measuring stress in wildlife: techniques for quantifying glucocorticoids

  • Michael J. SheriffEmail author
  • Ben Dantzer
  • Brendan Delehanty
  • Rupert Palme
  • Rudy Boonstra
Physiological ecology - Original Paper


Stress responses play a key role in allowing animals to cope with change and challenge in the face of both environmental certainty and uncertainty. Measurement of glucocorticoid levels, key elements in the neuroendocrine stress axis, can give insight into an animal’s well-being and can aid understanding ecological and evolutionary processes as well as conservation and management issues. We give an overview of the four main biological samples that have been utilized [blood, saliva, excreta (feces and urine), and integumentary structures (hair and feathers)], their advantages and disadvantages for use with wildlife, and some of the background and pitfalls that users must consider in interpreting their results. The matrix of choice will depend on the nature of the study and of the species, on whether one is examining the impact of acute versus chronic stressors, and on the degree of invasiveness that is possible or desirable. In some cases, more than one matrix can be measured to achieve the same ends. All require a significant degree of expertise, sometimes in obtaining the sample and always in extracting and analyzing the glucocorticoid or its metabolites. Glucocorticoid measurement is proving to be a powerful integrator of environmental stressors and of an animal’s condition.


Glucocorticoids Stress response Salivary glucocorticoids Fecal glucocorticoid metabolites Hair and feather glucocorticoids 



We would like to thank Dr. C.T. Williams and Dr. T. Jessop for their valuable comments during the writing of this review.


  1. Abraham GE (1975) Radioimmunoassay of steroids in biological fluids. J Steroid Biochem 6:261–270PubMedCrossRefGoogle Scholar
  2. Accorsi P, Carloni E, Valsecchi P, Viggiani R, Gamberoni M, Tamanini C, Seren E (2008) Cortisol determination in hair and feces from domestic cats and dogs. Gen Comp Endocrinol 155:398–402PubMedCrossRefGoogle Scholar
  3. Anisman H, Griffiths J, Matheson K, Ravindran AV, Merali Z (2001) Posttraumatic stress symptoms and salivary cortisol levels. Am J Psychiatry 158:1509–1511PubMedCrossRefGoogle Scholar
  4. Arnold JM, Oswald SA, Voigt CC, Palme R, Braasch A, Bauch C, Becker PH (2008) Taking the stress out of blood collection: comparison of field blood-sampling techniques for analysis of baseline corticosterone. J Avian Biol 39:588–592CrossRefGoogle Scholar
  5. Astheimer LB, Buttener WA, Wingfield JC (1994) Gender and seasonal differences in the adrenocortical response to ACTH challenge in an arctic passerine, Zonotrichia leucophrys gambelii. Gen Comp Endocrinol 94:33–43PubMedCrossRefGoogle Scholar
  6. Auperin B, Geslin M (2008) Plasma cortisol response to stress in juvenile rainbow trout is influenced by their life history during early development and by egg cortisol content. Gen Comp Endocrinol 158:234–239PubMedCrossRefGoogle Scholar
  7. Bahr NI, Palme R, Möhle U, Hodges JK, Heistermann M (2000) Comparative aspects of the metabolism and excretion of cortisol in three individual nonhuman primates. Gen Comp Endocrinol 117:427–438PubMedCrossRefGoogle Scholar
  8. Banerjee S, Levitz M, Rosenberg CR (1962) On the stability of salivary progesterone under various conditions of storage. Steroids 46:967–974CrossRefGoogle Scholar
  9. Barsano CP, Baumann G (1989) Simple algebraic and graphic methods for the apportionment of hormone (and receptor) into bound and free fractions in binding equilibria; or how to calculate bound and free hormone? Endocrinology 124:1101–1106PubMedCrossRefGoogle Scholar
  10. Beehner JC, McCann C (2008) Seasonal and altitudinal effects on glucocorticoid metabolites in a wild primate (Theropithecus gelada). Physiol Behav 95:508–514PubMedCrossRefGoogle Scholar
  11. Beehner JC, Whitten PL (2004) Modifications of a field method for fecal steroid analysis in baboons. Physiol Behav 82:269–277PubMedCrossRefGoogle Scholar
  12. Bentley PJ (1998) Comparative vertebrate endocrinology, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  13. Blas J, Bortolotti GR, Tella JL, Marchant TA (2007) Stress response during development predicts fitness in a wild, long lived vertebrate. Proc Natl Acad Sci USA 104:8880–8884PubMedCrossRefGoogle Scholar
  14. Boonstra R, Boag PT (1992) Spring declines in Microtus pennsylvanicus and the role of steroid-hormones. J Anim Ecol 61:339–352CrossRefGoogle Scholar
  15. Boonstra R, Singleton GR (1993) Population declines in the snowshoe hare and the role of stress. Gen Comp Endocrinol 91:126–143PubMedCrossRefGoogle Scholar
  16. Boonstra R, Hik D, Singleton GR, Tinnikov A (1998) The impact of predator-induced stress on the snowshoe hare cycle. Ecol Monogr 79:317–394Google Scholar
  17. Boonstra R, Hubbs AH, Lacey EA, McColl CJ (2001) Seasonal changes in glucocorticoid and testosterone concentrations in free-living arctic ground squirrels from the boreal forest of the Yukon. Can J Zool 79:49–58CrossRefGoogle Scholar
  18. Bortolotti GR, Marchant TA, Blas J, German T (2008) Corticosterone in feathers is a long-term, integrated measure of avian stress physiology. Funct Ecol 22:494–500CrossRefGoogle Scholar
  19. Bortolotti GR, Marchant TA, Blas J, Cabezas S (2009a) Tracking stress: localisation, deposition and stability of corticosterone in feathers. J Exp Biol 212:1477–1482PubMedCrossRefGoogle Scholar
  20. Bortolotti GR, Mougeot F, Martinez-Padilla J, Webster LMI, Piertney SB (2009b) Physiological stress mediates the honesty of social signals. PLoS ONE 4:e4983. doi: 10.1371/journal.pone.0004983 PubMedCrossRefGoogle Scholar
  21. Boyce WT, Champoux M, Suomi SJ, Gunnar MR (1995) Salivary cortisol in nursery-reared rhesus monkeys: reactivity to peer interactions and altered circadian activity. Dev Psychobiol 28:257–267PubMedCrossRefGoogle Scholar
  22. Bradley AJ (1987) Stress and mortality in the red-tailed phascogale, Phascogale calura (Marsupialia, Dasyuridae). Gen Comp Endocrinol 67:85–100PubMedCrossRefGoogle Scholar
  23. Bradley AJ, Stoddart DM (1993) The dorsal paracloacal gland and its relationship with seasonal changes in cutaneous scent gland morphology and plasma androgen in the marsupial sugar glider (Petaurus breviceps; Marsupialia: Petauridae). J Zool Lond 229:331–346CrossRefGoogle Scholar
  24. Bradshaw D (2003) Vertebrate ecophysiology—an introduction to its principles and applications. Cambridge University Press, CambridgeGoogle Scholar
  25. Breuner CW, Orchinik M (2001) Seasonal regulation of membrane and intracellular corticosteroid receptors in the house sparrow brain. J Neuroendocrinol 13:412–420PubMedCrossRefGoogle Scholar
  26. Breuner CW, Orchinik M (2002) Plasma binding proteins as mediators of corticosteroid action in vertebrates. J Endocrinol 175:99–112PubMedCrossRefGoogle Scholar
  27. Breuner CW, Lynn SE, Julian GE, Cornelius JM, Heidinger BJ, Love OP, Sprague RS, Wada H, Whitman BA (2006) Plasma-binding globulins and acute stress response. Horm Metab Res 38:260–268PubMedCrossRefGoogle Scholar
  28. Buchanan KL, Goldsmith AR (2004) Noninvasive endocrine data for behavioural studies: the importance of validation. Anim Behav 67:183–185CrossRefGoogle Scholar
  29. Busch DS, Hayward LS (2009) Stress in a conservation context: a discussion of glucocorticoid actions and how levels change with conservation-relevant variables. Biol Conserv 142:2844–2853CrossRefGoogle Scholar
  30. Butler WR, Des Bordes CK (1980) Radioimmunoassay technique for measuring cortisol in milk. J Dairy Sci 63:474–477PubMedCrossRefGoogle Scholar
  31. Cash WB, Holberton RL, Knight SS (1997) Corticosterone secretion in response to capture and handling in free-living red-eared slider turtles. Gen Comp Endocrinol 108:427–433PubMedCrossRefGoogle Scholar
  32. Casolini P, Cigliana G, Alema GS, Ruggieri V, Angelucci L, Catalani A (1997) Effect of increased maternal corticosterone during lactation on hippocampal corticosteroid receptors, stress response and learning in offspring in the early stages of life. Neuroscience 79:1005–1012PubMedCrossRefGoogle Scholar
  33. Catalani A, Casolini P, Scaccianoce S, Patacchioli FR, Spinozzi P, Angelucci L (2000) Maternal corticosterone during lactation permanently affects brain receptors, stress response and behaviour in rat progeny. Neuroscience 100:319–325PubMedCrossRefGoogle Scholar
  34. Chang K, Chiou WL (1976) Interactions between drugs and saliva-stimulating parafilm and their implications in measurements of saliva drug levels. Res Commun Chem Pathol Pharmacol 13:357–360PubMedGoogle Scholar
  35. Chard T (1995) An introduction to radioimmunoassay and related techniques. Elsevier, New YorkGoogle Scholar
  36. Charlier TD, Underhill C, Hammond GL, Soma K (2009) Effects of aggressive encounters on plasma corticosteroid-binding globulin and its ligands in white-crowned sparrows. Horm Behav 56:339–347PubMedCrossRefGoogle Scholar
  37. Chen Ym, Cintron NM, Whitson PA (1992) Long-term storage of salivary cortisol samples at room temperature. Clin Chem 38:304PubMedGoogle Scholar
  38. Chin EH, Love OP, Verspoor JJ, Williams TD, Rowley K, Burness G (2009) Juveniles exposed to embryonic corticosterone have enhanced flight performance. Proc R Soc Lond B 276:499–505CrossRefGoogle Scholar
  39. Clinchy M, Zanette L, Boonstra R, Wingfield JC, Smith JNM (2004) Balancing food and predator pressure induces chronic stress in songbirds. Proc R Soc Lond B 271:2473–2479CrossRefGoogle Scholar
  40. Cone EJ (1996) Mechanisms of drug incorporation into hair. Ther Drug Monit 18:438–443PubMedCrossRefGoogle Scholar
  41. Creel S (2001) Social dominance and stress hormones. Trends Ecol Evol 16:491–497CrossRefGoogle Scholar
  42. Creel S, Fox JE, Hardy A, Sands J, Garrott B, Peterson RO (2002) Snowmobile activity and glucocorticoid stress responses in wolves and elk. Conserv Biol 16:809–814CrossRefGoogle Scholar
  43. Cross N, Rogers LJ (2004) Diurnal cycle in salivary cortisol levels in common marmosets. Dev Psychobiol 45:134–139PubMedCrossRefGoogle Scholar
  44. Cyr N, Romero LM (2007) Chronic stress in free-living European starlings reduces corticosterone concentrations and reproductive success. Gen Comp Endocrinol 151:82–89PubMedCrossRefGoogle Scholar
  45. Cyr NC, Romero LM (2009) Identifying hormonal habituation in field studies of stress. Gen Comp Endocrinol 161:295–303PubMedCrossRefGoogle Scholar
  46. Dallman MF, Bhatnagar S (2001) Chronis stress and energy balance: role of the hypothalmo-pituitary-adrenal axis. In: McEwen BS, Goodman HM (eds) Handbook of physiology; section 7: the endocrine system. Coping with the environment: neural and endocrine mechanisms. Oxford University Press, New York, pp 197–210Google Scholar
  47. Dantzer B, McAdam AG, Palme R, Fletcher QE, Boutin S, Humphries MM, Boonstra R (2010) Fecal cortisol metabolite levels in free-ranging North American red squirrels: assay validation and the effects of reproductive condition. Gen Comp Endocrinol 167:279–286PubMedCrossRefGoogle Scholar
  48. Dantzer B, McAdam AG, Palme R, Boutin S, Humphries MM, Boonstra R (2011) Maternal androgens and behaviour in free-ranging North American red squirrels. Anim Behav 81:469–479CrossRefGoogle Scholar
  49. Davenport MD, Tiefenbacher S, Lutz CK, Novak MA, Meyer JS (2006) Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. Gen Comp Endocrinol 147:255–261PubMedCrossRefGoogle Scholar
  50. De Kloet ER, Vreugdenhil E, Oitzl MS, Joëls M (1998) Brain corticosteroid receptor balance in health and disease. Endocr Rev 19:269–301PubMedCrossRefGoogle Scholar
  51. De Kloet ER, Oitzl MS, Joëls M (1999) Stress and cognition: are corticosteroids good or bad guys? Trends Neurosci 22:422–426PubMedCrossRefGoogle Scholar
  52. De Kloet ER, Sibug RM, Helmerhorst M, Schmidt M (2005) Stress, genes and the mechanism of programming the brain for later life. Neurosci Biobehav Rev 29:271–281PubMedCrossRefGoogle Scholar
  53. Delehanty B, Boonstra R (2009) Impact of live trapping on stress profiles of Richardson’s ground squirrel (Spermophilus richardsonii). Gen Comp Endocrinol 160:176–182PubMedCrossRefGoogle Scholar
  54. Dloniak SM, French JA, Place NJ, Weldele ML, Glickman SE, Holekamp KE (2004) Non-invasive monitoring of fecal androgens in spotted hyenas (Crocuta crocuta). Gen Comp Endocrinol 135:51–61PubMedCrossRefGoogle Scholar
  55. Dorn LD, Lucke JF, Loucks TL, Berga SL (2007) Salivary cortisol reflects serum cortisol: analysis of circadian profiles. Ann Clin Biochem 44:281–284PubMedCrossRefGoogle Scholar
  56. Eriksson H, Gustafsson JA (1970) Steroids in germfree and conventional rats. Distribution and excretion of labelled pregnenolone and corticosterone in male and female rats. Eur J Biochem 15:132–139PubMedCrossRefGoogle Scholar
  57. Fenske M (1997) The use of salivary cortisol measurements for the non-invasive assessment of adrenal cortical function in guinea pigs. Exp Clin Endocrinol Diabetes 105:163–168PubMedCrossRefGoogle Scholar
  58. Fink G (2007) Encyclopedia of stress, 2nd edn. Elsevier, LondonGoogle Scholar
  59. Fletcher QE, Boonstra R (2006) Impact of live trapping on the stress response of the meadow vole (Microtus pennsylvanicus). J Zool 270:473–478CrossRefGoogle Scholar
  60. Foster LB, Dunn RT (1974) Single-antibody technique for radioimmunoassay of cortisol in unextracted serum or plasma. Clin Chem 20:365–368PubMedGoogle Scholar
  61. Gagliano M, McCormick MI (2009) Hormonally mediated maternal effects shape offspring survival potential in stressful environments. Oecologia 160:657–665PubMedCrossRefGoogle Scholar
  62. Gallagher P, Leitch MM, Massey AE, McAllister-Williams RH, Young AH (2006) Assessing cortisol and dehydroepiandrosterone (DHEA) in saliva: effects of collection method. J Psychopharmacol 20:643–649PubMedCrossRefGoogle Scholar
  63. Ganswindt A, Münscher S, Henley M, Henley S, Heistermann M, Palme R, Thompson P, Bertschinger H (2010) Endocrine correlates of musth and the impact of ecological and social factors in free-ranging African elephants (Loxodonta africana). Horm Behav 57:506–514PubMedCrossRefGoogle Scholar
  64. Garde AH, Hansen AM (2005) Long-term stability of salivary cortisol. Scand J Clin Lab Invest 65:433–436PubMedCrossRefGoogle Scholar
  65. Gist DH, Kaplan ML (1976) Effects of stress and ACTH on plasma corticosterone levels in the Caiman Caiman crocodilus. Gen Comp Endocrinol 28:413–419PubMedCrossRefGoogle Scholar
  66. Gomez A, Jewell E, Walker SL, Brown JL (2004) Use of salivary steroid analyses to assess ovarian cycles in an Indian rhinoceros at the National Zoological Park. Zoo Biol 23:501–512CrossRefGoogle Scholar
  67. Gow R, Thomson S, Rieder M, Van Uum S, Koren G (2010) An assessment of cortisol analysis in hair and its clinical applications. Forensic Sci Int 196:32–37PubMedCrossRefGoogle Scholar
  68. Goymann W (2005) Noninvasive monitoring of hormones in bird droppings: physiological validation, sampling, extraction, sex differences, and the influence of diet on hormone metabolite levels. Ann NY Acad Sci 1046:35–53PubMedCrossRefGoogle Scholar
  69. Goymann W, Möstl E, Van’t Hof T, East ML, Hofer H (1999) Noninvasive fecal monitoring of glucocorticoids in spotted hyenas, Crocuta crocuta. Gen Comp Endocrinol 114:340–348PubMedCrossRefGoogle Scholar
  70. Gröschl M (2007) Current status of salivary hormone analysis. Clin Chem 54:1759–1769CrossRefGoogle Scholar
  71. Grubb T (1989) Feather growth bars as indicators of nutritional status. Auk 106:314–320Google Scholar
  72. Guillette LJ Jr, Cree A, Rooney AA (1995) Biology of stress: interactions with reproduction, immunology and intermediary metabolism. In: Warwick C, Frye FL, Murphy JB (eds) Health and welfare of captive reptiles. Chapman and Hall, London, pp 33–81Google Scholar
  73. Hackl R, Bromundt V, Daisley J, Kotrschal K, Möstl E (2003) Distribution and origin of steroid hormones in the yolk of Japanese quail eggs (Coturnix coturnix japonica). J Comp Physiol B 173:327–331PubMedCrossRefGoogle Scholar
  74. Hammond GL (1995) Potential functions of plasma steroid-binding proteins. Trends Endocrinol Metab 6:298–304PubMedCrossRefGoogle Scholar
  75. Hammond GL, Lähteenmäki PL (1983) A versatile method for the determination of serum cortisol binding globulin and sex-hormone binding globulin binding-capacities. Clin Chim Acta 132:101–110PubMedCrossRefGoogle Scholar
  76. Handa RJ, Burgess LH, Kerr JE, O’keefe JA (1994) Gonadal steroid hormone receptors and sex differences in the hypothalamo-pituitary-adrenal axis. Horm Behav 28:464–476PubMedCrossRefGoogle Scholar
  77. Handasyde KA, McDonald IR, Evans BK (2003) Plasma glucocorticoid concentrations in free-ranging platypuses (Ornithorhynchus anatinus): response to capture and patterns in relation to reproduction. Comp Biochem Physiol A 136:895–902CrossRefGoogle Scholar
  78. Harlow HJ, Lindzey FG, Van Sicke WD, Gern WA (1992) Stress response of cougars to nonlethal pursuit by hunters. Can J Zool 70:136–139CrossRefGoogle Scholar
  79. Hellhammer DH, Wüst S, Kudielka BM (2009) Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology 34:163–171PubMedCrossRefGoogle Scholar
  80. Hem A, Smith AJ, Solberg P (1998) Saphenous vein puncture for blood sampling of the mouse, rat, hamster, gerbil, guinea pig, ferret and mink. Lab Anim 32:364–368PubMedCrossRefGoogle Scholar
  81. Henriksen R, Rettenbacher S, Groothuis TGG (2011) Prenatal stress in birds: what do we know and how does this relate to research in mammals? Neurosci Biobehav Rev (invited review, under revision)Google Scholar
  82. Hirschenhauser K, Kotrschal K, Möstl E (2005) Synthesis of measuring steroid metabolites in goose feces. Ann NY Acad Sci 1046:138–153PubMedCrossRefGoogle Scholar
  83. Hogg CJ, Vickers ER, Rogers TL (2005) Determination of testosterone in saliva and blow of bottlenose dolphins (Tursiops truncatus) using liquid chromatography-mass spectrometry. J Chromatogr B Anal Technol Biomed Sci 814:339–346CrossRefGoogle Scholar
  84. Höld KM, de Boer D, Zuidema J, Maes RA (1995) Evaluation of the Salivette as sampling device for monitoring beta-adrenoceptor blocking drugs in saliva. J Chromatogr B Biomed Appl 663:103–110PubMedCrossRefGoogle Scholar
  85. Huber S, Palme R, Arnold W (2003) Effects of season, sex, and sample collection on concentrations of fecal cortisol metabolites in red deer (Cervus elaphus). Gen Comp Endocrinol 130:48–54PubMedCrossRefGoogle Scholar
  86. Hunt KE, Wasser SK (2003) Effect of long-term preservation methods on fecal glucocorticoid concentrations of grizzly bear and African elephant. Physiol Biochem Zool 76:918–928PubMedCrossRefGoogle Scholar
  87. Janczak AM, Torjesen P, Palme R, Bakken M (2007) Effects of stress in hens on the behaviour of their offspring. Appl Anim Beh Sci 107:66–77CrossRefGoogle Scholar
  88. Jaspers V, Dauwe T, Pinxten R, Bervoets L, Blust R, Eens M (2004) The importance of exogenous contamination on heavy metal levels in bird feathers. A field experiment with free-living great tits, Parus major. J Environ Monit 6:356–360PubMedCrossRefGoogle Scholar
  89. Jessop TS, Tucker AD, Limpus CJ, Whittierd JM (2003) Interactions between ecology, demography, capture stress, and profiles of corticosterone and glucose in a free-living population of Australian freshwater crocodiles. Gen Comp Endocrinol 132:161–170PubMedCrossRefGoogle Scholar
  90. Katz FH, Shannon IL (1964) Identification and significance of parotid fluid corticosteroids. Acta Endocrinol 46:393–403PubMedGoogle Scholar
  91. Kenagy GJ, Place NJ (2000) Seasonal changes in plasma glucocorticosteroids of free-living female yellow-pine chipmunks: effects of reproduction and capture and handling. Gen Comp Endocrinol 117:189–199PubMedCrossRefGoogle Scholar
  92. Khan MZ, Altmann J, Isani SS, Yu J (2002) A matter of time: evaluating the storage of fecal samples for steroid analysis. Gen Comp Endocrinol 128:64–67CrossRefGoogle Scholar
  93. Kirschbaum C, Hellhammer DH (1989) Salivary cortisol in psychobiological research: an overview. Neuropsychobiology 22:150–169PubMedCrossRefGoogle Scholar
  94. Kirschbaum C, Hellhammer DH (1994) Salivary cortisol in psychoneuroendocrine research: recent developments and applications. Psychoneuroendocrinology 19:313–333PubMedCrossRefGoogle Scholar
  95. Kitaysky AS, Piatt JF, Wingfield JC (2007) Stress hormones link food availability and population processes in seabirds. Mar Ecol Prog Ser 352:245–258CrossRefGoogle Scholar
  96. Klasing KC (2005) Potential impact of nutritional strategy on noninvasive measurements of hormones in birds. Ann NY Acad Sci 1046:5–16PubMedCrossRefGoogle Scholar
  97. Koren L, Mokady O, Karasov T, Klein J, Koren G, Geffen E (2002) A novel method using hair for determining hormonal levels in wildlife. Anim Behav 63:403–406CrossRefGoogle Scholar
  98. Koren L, Mokady L, Geffen E (2008) Social status and cortisol levels in singing rock hyraxes. Horm Behav 54:212–216PubMedCrossRefGoogle Scholar
  99. Lang SLC, Iverson SJ, Bowen WD (2005) Individual variation in milk composition over lactation in harbour seals (Phoca vitulina) and the potential consequences of intermittent attendance. Can J Zool 83:1525–1531CrossRefGoogle Scholar
  100. Lèche A, Busso JM, Hansen C, Navarro JL, Marín RH, Martella BM (2009) Physiological stress in captive greater rheas (Rhea americana): highly sensitive plasma corticosterone response to an ACTH challenge. Gen Comp Endocrinol 162:188–191PubMedCrossRefGoogle Scholar
  101. Lexen E, El-Bahr SM, Sommerfeld-Stur I, Palme R, Möstl E (2008) Monitoring the adrenocortical response to disturbances in sheep by measuring glucocorticoid metabolites in the faeces. Wien Tierärztl Mschr Vet Med Austria 95:64–71Google Scholar
  102. Love OP, Wynne-Edwards KE, Bond L, Williams TD (2008) Determinants of within- and among-clutch variation in yolk corticosterone in the European starling. Horm Behav 53:104–111PubMedCrossRefGoogle Scholar
  103. Lutz CK, Tiefenbacher S, Jorgensen MJ, Meyer JS (2000) Techniques for collecting saliva from awake, unrestrained, adult monkeys for cortisol assay. Am J Primatol 52:93–99PubMedCrossRefGoogle Scholar
  104. Lynch JW, Khan MZ, Altmann J, Nijahira MN, Rubenstein N (2002) Concentrations of four fecal steroids in wild babbons: short-term storage conditions and consequences for data interpretation. Gen Comp Endocrinol 132:264–271CrossRefGoogle Scholar
  105. Lynn SE, Porter AJ (2008) Trapping initiates stress response in breeding and nonbreeding house sparrows Passer domesticus: implications for using unmonitored traps in field studies. J Avian Biol 39:87–94CrossRefGoogle Scholar
  106. Malisch JL, Breuner CW (2010) Steroid-binding proteins and free steroids in birds. Mol Cell Edocrinol 316:42–52CrossRefGoogle Scholar
  107. Martin JGA, Réale D (2008) Animal temperament and human disturbance: implications for the response of wildlife to tourism. Behav Process 77:66–72CrossRefGoogle Scholar
  108. Mateo JM, Cavigelli SA (2005) A validation of extraction methods for noninvasive sampling of glucocorticoids in free-living ground squirrels. Physiol Biochem Zool 78:1069–1084PubMedCrossRefGoogle Scholar
  109. Matthews SG (2002) Early programming of the hypothalamo-pituitary-adrenal axis. Trends Endocrinol Metab 19:373–380Google Scholar
  110. McDonald JE Jr, Fuller TK (2005) Effects of spring acorn availability on black bear diet, milk composition, and cub survival. J Mammal 86:1022–1028CrossRefGoogle Scholar
  111. McDonald IR, Lee AK, Bradley AJ, Than KA (1981) Endocrine changes in dasyurid marsupials with differing mortality patterns. Gen Comp Endocrinol 44:292–301PubMedCrossRefGoogle Scholar
  112. McDonald IR, Lee AK, Than KA, Martin RW (1986) Failure of glucocorticoid feedback in males of a population of small marsupials (Antechinus swainsonii) during a period of mating. J Endocrinol 108:63–68PubMedCrossRefGoogle Scholar
  113. McKenzie S, Deane EM, Burnett L (2004) Are serum cortisol levels a reliable indicator of wellbeing in the tammar wallaby, Macropus eugenii? J Comp Biochem Physiol A 138:341–348CrossRefGoogle Scholar
  114. Millspaugh JJ, Washburn BE (2004) Use of fecal glucocorticoid metabolite measures in conservation biology research: considerations for application and interpretation. Gen Comp Endocrinol 138:189–199PubMedCrossRefGoogle Scholar
  115. Millspaugh JJ, Washburn BE, Milanick MA, Beringer J, Hansen LP, Meyer TM (2002) Non-invasive techniques for stress assessment in white-tailed deer. Wildl Soc Bull 30:899–907Google Scholar
  116. Möhle U, Heistermann M, Palme R, Hodges JK (2002) Characterization of urinary and fecal metabolites of testosterone and their measurement for assessing gonadal endocrine function in male nonhuman primates. Gen Comp Endocrinol 129:135–145PubMedCrossRefGoogle Scholar
  117. Monclús R, Palomares F, Tablado Z, Martínez-Fontúrbel A, Palme R (2009) Testing the threat-sensitive predator avoidance hypothesis: physiological responses and predator pressure in wild rabbits. Oecologia 158:615–623PubMedCrossRefGoogle Scholar
  118. Mormede P, Andanson S, Auperin B, Beerda B, Guemene D, Malnikvist J, Manteca X, Manteuffel G, Prunet P, van Reenen CG, Richard S, Veissier I (2007) Exploration of the hypothalamic-pituitary-adrenal function as a tool to evaluate animal welfare. Physiol Behav 92:317–339PubMedCrossRefGoogle Scholar
  119. Möstl E, Palme R (2002) Hormones as indicators of stress. Domest Anim Endocrinol 23:67–74PubMedCrossRefGoogle Scholar
  120. Möstl E, Messman S, Bagu E, Robia C, Palme R (1999) Measurement of glucocorticoid metabolite concentrations in faeces of domestic livestock. J Vet Med A 46:621–632CrossRefGoogle Scholar
  121. Möstl E, Rettenbacher S, Palme R (2005) Measurement of corticosterone metabolites in birds’ droppings: an analytical approach. Ann NY Acad Sci 1046:17–34PubMedCrossRefGoogle Scholar
  122. Mougeot F, Martinez-Padilla J, Bortolotti GR, Webster MI, Piertney SB (2009) Physiological stress links parasites to carotenoid-based colour signals. J Evol Biol 23:643–650CrossRefGoogle Scholar
  123. Mueller C, Jenni-Eiermann S, Blondel J, Perret P, Caro SP, Lambrechts M, Jenni L (2006) Effect of human presence and handling on circulating corticosterone levels in breeding blue tits (Parus caeruleus). Gen Comp Endocrinol 148:163–171CrossRefGoogle Scholar
  124. Newman AEM, Pradhan DS, Soma KK (2008a) Dehydroepiandrosterone and corticosterone are regulated by season and acute stress in a wild songbird: jugular versus brachial plasma. Endocrinology 149:2537–2545PubMedCrossRefGoogle Scholar
  125. Newman AEM, Chin EH, Schmidt KL, Bond L, Wynne-Edwards KE, Soma KK (2008b) Analysis of steroids in songbird plasma and brain by coupling solid phase extraction to radioimmunoassay. Gen Comp Endocrinol 155:503–510PubMedCrossRefGoogle Scholar
  126. Orchinik M, Hastings N, Witt D, McEwen BS (1997) High affinity binding of corticosterone to mammalian neuronal membranes: possible role of corticosteroid binding globulin. J Steroid Biochem Mol Biol 60:229–236PubMedCrossRefGoogle Scholar
  127. Owen D, Marcus HA, Matthews SG (2005) Maternal adversity, glucocorticoids and programming of neuroendocrine function and behaviour. Neurosci Biobehav Rev 29:209–226PubMedCrossRefGoogle Scholar
  128. Palme R (2005) Measuring fecal steroids: guidelines for practical application. Ann NY Acad Sci 1046:75–80PubMedCrossRefGoogle Scholar
  129. Palme R, Möstl E (1997) Measurement of cortisol metabolites in faeces of sheep as a parameter of cortisol concentration in blood. Z Saugetierkd Int J Mammal Biol 62(Suppl 2):192–197Google Scholar
  130. Palme R, Fischer P, Schildorfer H, Ismail MN (1996) Excretion of infused 14C-steroid hormones via faeces and urine in domestic livestock. Anim Reprod Sci 43:43–63CrossRefGoogle Scholar
  131. Palme R, Rettenbacher S, Touma C, El-Bahr SM, Möstl E (2005) Stress hormones in mammals and birds: comparative aspects regarding metabolism, excretion, and noninvasive measurement in fecal samples. Ann NY Acad Sci 1040:162–171PubMedCrossRefGoogle Scholar
  132. Paul MJ, George NT, Zucker I, Butler MP (2007) Photoperiodic and hormonal influences on fur density and regrowth in two hamster species. Am J Physiol Reg Integr Comp Physiol 293:2363–2369CrossRefGoogle Scholar
  133. Pearson BL, Judge PG, Reeder DM (2008) Effectiveness of saliva collection and enzyme-immunoassay for the quantification of cortisol in socially housed baboons. Am J Primatol 70:1145–1151PubMedCrossRefGoogle Scholar
  134. Place NJ, Kenagy GJ (2000) Seasonal changes in plasma testosterone and glucocorticosteroids in free-living male yellow-pine chipmunks and the response to capture and handling. J Comp Physiol B 170:245–251PubMedCrossRefGoogle Scholar
  135. Rash JM, Jerkunica I, Sgoutas DS (1980) Lipid interference in steroid radioimmunoassay. Clin Chem 26:84–88PubMedGoogle Scholar
  136. Raul JS, Cirimele V, Ludes B, Kintz P (2004) Detection of physiological concentrations of cortisol and cortisone in human hair. Clin Biochem 37:1105–1111PubMedCrossRefGoogle Scholar
  137. Reeder DM, Kramer KM (2005) Stress in free-ranging mammals: integrating physiology, ecology, and natural history. J Mammal 86:225–235CrossRefGoogle Scholar
  138. Reeder DM, Kosteczko NS, Kunz TH, Widmaier EP (2004) Changes in baseline and stress-induced glucocorticoid levels during the active period in free-ranging male and female little brown myotis, Myotis lucifugus (Chiroptera: Vespertilionidae). Gen Comp Endocrinol 135:260–269CrossRefGoogle Scholar
  139. Rehnus M, Hackländer K, Palme R (2009) A non-invasive method for measuring glucocorticoid metabolites (GCM) in Mountain hares (Lepus timidus). Eur J Wildl Res 55:615–620CrossRefGoogle Scholar
  140. Reimers TJ, McCann JP, Cowan RG (1983) Effects of storage times and temperatures on T3, T4, LH, Prolactin, insulin, cortisol and progesterone concentrations in blood samples from cows. J Anim Sci 57:683–691PubMedGoogle Scholar
  141. Rettenbacher S, Möstl E, Hackl R, Palme R (2005) Corticosterone in chicken eggs. Ann NY Acad Sci 1046:193–203PubMedCrossRefGoogle Scholar
  142. Rettenbacher S, Möstl E, Groothuis TGG (2009) Gestagens and glucocorticoids in chicken eggs. Gen Comp Endocrinol 164:125–129PubMedCrossRefGoogle Scholar
  143. Riad-Fahmy D, Read GF, Walker RF, Griffiths K (1982) Steroids in saliva for assessing endocrine function. Endocr Rev 3:367–395PubMedCrossRefGoogle Scholar
  144. Rich EL, Romero ML (2005) Exposure to chronic stress downregulates corticosterone responses to acute stressors. Am J Physiol Regul Integr Comp Physiol 288:R1628–R1636PubMedCrossRefGoogle Scholar
  145. Romero LM (2002) Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. Gen Comp Endocrinol 128:1–24PubMedCrossRefGoogle Scholar
  146. Romero LM, Reed JM (2005) Collecting baseline corticosterone samples in the field: is under 3 min good enough? Comp Biochem Physiol A 140:73–79Google Scholar
  147. Romero LM, Wingfield JC (1998) Seasonal changes in adrenal sensitivity alter corticosterone levels in Gambel’s white-crowned sparrows (Zonotrichia leucophrys gambelii). Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 119:31–36PubMedCrossRefGoogle Scholar
  148. Romero LM, Meister CJ, Cyr NE, Kenagy GJ, Wingfield JC (2008) Seasonal glucocorticoid responses to capture in wild free-living mammals. Am J Physiol Regul Integr Comp Physiol 294:R614–R622PubMedCrossRefGoogle Scholar
  149. Rosner W (1990) The functions of corticosteroid-binding globulin and sex hormone-binding globulin: recent advances. Endocr Rev 11:80–91PubMedCrossRefGoogle Scholar
  150. Sapolsky RM (1983) Individual differences in cortisol secretory patterns in the wild baboon: role of negative feedback sensitivity. Endocrinology 113:2263–2267PubMedCrossRefGoogle Scholar
  151. Sapolsky RM (1992) Neuroendocrinology of the stress-response. In: Becker JB, Breedlove SM, Crews D (eds) Behavioural endocrinology. MIT Press, Cambridge, pp 287–324Google Scholar
  152. Sapolsky RM (1993) Endocrinology alfresco: psychoendocrine studies of wild baboons. Recent Prog Horm Res 48:437–468PubMedGoogle Scholar
  153. Sapolsky RM, Share LJ (1994) Rank-related differences in cardiovascular function among wild baboons: role of sensitivity to glucocorticoids. Am J Primatol 32:175–261CrossRefGoogle Scholar
  154. Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89PubMedCrossRefGoogle Scholar
  155. Sauvé B, Koren G, Walsh G, Tokmakejian S, Van Uum SHM (2007) Measurement of cortisol in human hair as a biomarker of systemic exposure. Clin Invest Med 30:E183–E191PubMedGoogle Scholar
  156. Scott AP, Hirschenhauser K, Bender N, Oliveira R, Earley RL, Sebire M, Ellis T, Pavlidis M, Hubbard PC, Huertas M, Canario A (2008) Non-invasive measurement of steroids in fish-holding water: important considerations when applying the procedure to behaviour studies. Behaviour 145:1307–1328CrossRefGoogle Scholar
  157. Seckl JR (2004) Prenatal glucocorticoids and long-term programming. Eur J Endocrinol 151:U49–U62PubMedCrossRefGoogle Scholar
  158. Sergent N, Rogers T, Cunningham M (2004) Influence of biological and ecological factors on hematological values in wild little penguins, Eudyptula minor. Comp Biochem Physiol A 138:333–339CrossRefGoogle Scholar
  159. Sernia C, Bradley AJ, McDonald IR (1979) High affinity binding of adrenocortical and gonadal steroids by plasma proteins of Australian marsupials. Gen Comp Endocrinol 38:496–503PubMedCrossRefGoogle Scholar
  160. Sharpley CF, Kauter KG, McFarlane JR (2009) An initial exploration of in vivo hair cortisol response to a brief pain stressor: latency, localization and independence effects. Physiol Res 58:757–761PubMedGoogle Scholar
  161. Sheriff MJ, Bosson CO, Krebs CJ, Boonstra R (2009a) A non-invasive technique for measuring fecal cortisol metabolites in snowshoe hares (Lepus americanus). J Comp Physiol B 179:305–313PubMedCrossRefGoogle Scholar
  162. Sheriff MJ, Krebs CJ, Boonstra R (2009b) The sensitive hare: sublethal effects of predator stress on reproduction in snowshoe hares. J Anim Ecol 78:1249–1258PubMedCrossRefGoogle Scholar
  163. Sheriff MJ, Krebs CJ, Boonstra R (2010a) The ghosts of predators past: population cycles and the role of maternal programming under fluctuating predation risk. Ecology 91:2983–2994PubMedCrossRefGoogle Scholar
  164. Sheriff MJ, Krebs CJ, Boonstra R (2010b) Assessing stress in animal populations: do fecal and plasma glucocorticoids tell the same story? Gen Comp Endocrinol 166:614–619PubMedCrossRefGoogle Scholar
  165. Sheriff MJ, Krebs CJ, Boonstra R (2011) From process to pattern: how fluctuating predation risk impacts the stress axis of the snowshoe hares during the 10-year cycle. Oecologia. doi: 10.1007/s00442-011-1907-2
  166. Shimozuru M, Kikusui T, Takeuchi Y, Mori Y (2006) Scent-marking and sexual activity may reflect social hierarchy among group-living male Mongolian gerbils (Meriones unguiculatus). Physiol Behav 89:644–649PubMedCrossRefGoogle Scholar
  167. Silverin B (1986) Corticosterone-binding proteins and behavioral-effects of high plasma-levels of corticosterone during the breeding period in the pied flycatcher. Gen Comp Endocrinol 64:67–74PubMedCrossRefGoogle Scholar
  168. Singer CJ, Khan MS, Rosner W (1988) Characteristics of the binding of corticosteroid-binding globulin to rat cell membranes. Endocrinology 122:89–96PubMedCrossRefGoogle Scholar
  169. Smith RE, Maguire JA, Stein-Oakley AN, Sasano H, Takahashi K, Fukushima K, Krozowski ZS (1996) Localization of 11 beta-hydroxysteroid dehydrogenase type 11 in human epithelial tissues. J Clin Endocrinol Metab 81:3244–3248PubMedCrossRefGoogle Scholar
  170. Stroud LR, Solomon C, Shehassa E, Papandonatos G, Niaura R, Lipsitt LP, LeWinn K, Buka L (2007) Long-term stability of maternal prenatal steroid hormones from the National Collaborative Perinatal Project: still valid after all these years. Psychoneuroendocrinology 32:140–150PubMedCrossRefGoogle Scholar
  171. Taylor W (1971) The excretion of steroid hormone metabolites in bile and feces. Vitam Horm 29:201–285PubMedCrossRefGoogle Scholar
  172. Terio KA, Brown JL, Moreland R, Munson L (2002) Comparison of different drying and storage methods on quantifiable concentrations of fecal steroids in the cheetah. Zoo Biol 21:119–134CrossRefGoogle Scholar
  173. Thiel D, Jenni-Eiermann S, Braunisch V, Palme R, Jenni L (2008) Ski tourism affects habitat use and evokes a physiological stress response in capercaillie Tetrao urogallus: a new methodological approach. J Appl Ecol 45:845–853CrossRefGoogle Scholar
  174. Touma C, Palme R (2005) Measuring fecal glucocorticoid metabolites in mammals and birds: the importance of validation. Ann NY Acad Sci 1046:54–74PubMedCrossRefGoogle Scholar
  175. Touma C, Sachser N, Möstl E, Palme R (2003) Effects of sex and time of day on metabolism and excretion of corticosterone in urine and feces of mice. Gen Comp Endocrinol 130:267–278PubMedCrossRefGoogle Scholar
  176. Trumble SJ, Castellini MA (2002) Blood chemistry, hematology, and morphology of wild harbor seal pups in Alaska. J Wildl Manag 66:1197–1207CrossRefGoogle Scholar
  177. Umeda T, Hiramatsu R, Iwaoka T, Shimada T, Miura F, Sato T (1981) Use of saliva for monitoring unbound free cortisol levels in serum. Clin Chim Acta 110:245–253PubMedCrossRefGoogle Scholar
  178. Van den Hauwe O, Dumoulin F, Eliot C, Peteghem Van (2005) Detection of synthetic glucocorticoid residues in cattle tissue and hair samples after a single dose administration using LC-MC/MC. J Chromatogr B 817:215–223CrossRefGoogle Scholar
  179. Veloso C, Place NJ, Kenagy GJ (2003) Milk composition of free-living yellow-pine chipmunks (Tamias amoenus): temporal variation during lactation. J Comp Biochem and Physiol A 134:387–392CrossRefGoogle Scholar
  180. Vining RF, McGinley RA, Maksvytis JJ, Ho KY (1983) Salivary cortisol: a better measure of adrenal cortisol function than serum cortisol. Ann Clin Biochem 20:329–336PubMedGoogle Scholar
  181. Vinson GP, Whitehourse BJ, Hinson JP (2007) Adrenal cortex. In: Fink G (ed) Encyclopedia of stress, 2nd edn. Elsevier, London, pp 39–46Google Scholar
  182. Voight CC, Faβbender M, Dehnhard M, Wibbelt G, Jewgenow K, Hofer H, Schaub GA (2004) Validation of a minimally invasive blood-sampling technique for the analysis of hormones in domestic rabbits, Oryctolagus cuniculus (Lagomorpha). Gen Comp Endocrinol 135:100–107CrossRefGoogle Scholar
  183. Wada H, Hahn TP, Breuner CW (2007) Development of stress reactivity in white crowned sparrow nestlings: total corticosterone response increases with age, while free corticosterone response remains low. Gen Comp Endocrinol 150:405–413PubMedCrossRefGoogle Scholar
  184. Walker SL, Smith RF, Jones DN, Routly JE, Dobson H (2008) Chronic stress, hormone profiles and estrus intensity in dairy cattle. Horm Behav 53:493–501PubMedCrossRefGoogle Scholar
  185. Warner DA, Radder RS, Shine R (2009) Corticosterone exposure during embryonic development affects offspring growth and sex ratios in opposing directions in two lizard species with environmental sex determination. Physiol Biochem Zool 82:363–371PubMedCrossRefGoogle Scholar
  186. Washburn BE, Millspaugh JJ (2002) Effects of simulated environmental conditions on glucocorticoid metabolite measurements in white-tailed deer feces. Gen Comp Endocrinol 127:217–222PubMedCrossRefGoogle Scholar
  187. Washburn BE, Millspaugh JJ, Schulz JH, Jones SB, Mong T (2003) Using fecal glucocorticoids for stress assessment in mourning doves. Condor 105:696–706CrossRefGoogle Scholar
  188. Wasser SK, Hunt KE (2005) Noninvasive measures of reproductive function and disturbance in the barred owl, great horned owl, and northern spotted owl. Ann NY Acad Sci 1046:109–137PubMedCrossRefGoogle Scholar
  189. Wasser SK, Risler L, Steiner RA (1988) Excreted steroids in primate feces over the menstrual cycle and pregnancy. Biol Reprod 39:862–872PubMedCrossRefGoogle Scholar
  190. Wasser SK, Thomas R, Nair PP, Guidry C, Southers J, Lucas J, Wildt DE, Monfort SL (1993) Effects of dietary fiber on faecal steroid measurements in baboons (Papio cynocephalus cynocephalus). J Reprod Fertil 101:213–220Google Scholar
  191. Wasser SK, Bevis K, King G, Hanson E (1997) Noninvasive physiological measures of disturbance in the northern spotted owl. Conserv Biol 11:1019–1022CrossRefGoogle Scholar
  192. Wasser SK, Hunt KE, Brown JL, Cooper K, Crockett CM, Bechert U, Millspaugh JJ, Larson S, Monfort SL (2000) A generalized fecal glucocorticoid assay for use in a diverse assay of non-domestic mammalian and avian species. Gen Comp Endocrinol 120:260–275PubMedCrossRefGoogle Scholar
  193. Webb AH, Allert JA, Kappenman KM, Marcos J, Feist GW, Schreck CB, Shackleton CH (2007) Identification of plasma glucocorticoids in pallid sturgeon in response to stress. Gen Comp Endocrinol 154:98–104PubMedCrossRefGoogle Scholar
  194. Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:591–625PubMedGoogle Scholar
  195. Westphal U (1971) Steroid–protein interactions: monographs on endocrinology, vol 4. Springer, BerlinGoogle Scholar
  196. Wikelski M, Romero LM (2003) Body size, performance and fitness in Galapagos marine iguanas. Integr Comp Biol 43:376–386PubMedCrossRefGoogle Scholar
  197. Wimsatt GR, O’shea TJ, Ellison LE, Pearce RD, Price VR (2005) Anesthesia and blood sampling of wild big brown bats (Eptesicus fuscus) with an assessment of impacts on survival. J Wildl Dis 41:87–95PubMedGoogle Scholar
  198. Wingfield JC (2003) Control of behavioural strategies for capricious environments. Anim Behav 66:807–816CrossRefGoogle Scholar
  199. Wingfield JC, Romero LM (2001) Adrenocortical responses to stress and their modulation in free-living vertebrates. In: McEwen BS (ed) Handbook of physiology, section 7: the endocrine system. Coping with the environment: neural and endocrine mechanisms. Oxford University Press, Oxford, pp 211–236Google Scholar
  200. Wingfield JC, Sapolsky RM (2003) Reproduction and resistance to stress: when and how. J Neuroendocrinol 15:711–724PubMedCrossRefGoogle Scholar
  201. Wingfield JC, Moore MC, Farner DS (1983) Endocrine responses to increment weather in naturally breeding population of white-crowned sparrows (Zonotrichia leucophrys pugetensis). Auk 100:56–62Google Scholar
  202. Wingfield JC, Vleck CM, Moore MC (1992) Seasonal changes in the adrenocortical response to stress in birds of the Sonoran Desert. J Exp Zool 264:419–428PubMedCrossRefGoogle Scholar
  203. Wingfield JC, Maney DL, Breuner CW, Jacobs JD, Lynn S, Ramenofsky M, Richardson RD (1998) Ecological bases of hormone-behavior interactions: the “emergency life history stage”. Am Zool 38:191–206Google Scholar
  204. Wingfield JC, Owen-Ashley N, Benowitz-Fredericks ZM, Lynn SE, Hahn TP, Wada H, Breuner C, Meddle SL, Romero LM (2004) Arctic spring: the arrival biology of migrant birds. Acta Zool Sin 50:948–960Google Scholar
  205. Wood P (2009) Salivary steroid assays—research or routine? Ann Clin Biochem 46:183–196PubMedCrossRefGoogle Scholar
  206. Yaneva M, Mosnier-Pudar H, Dugue MA, Grabar S, Fulla Y, Bertagna X (2004) Midnight salivary cortisol for the initial diagnosis of Cushing’s syndrome of various causes. J Clin Endocrinol Metab 89:3345–3351PubMedCrossRefGoogle Scholar
  207. Zarrow MX, Philpott JE, Denenberg VH (1970) Passage of 14C-4-corticosterone from the rat mother to the foetus and neonate. Nature 226:1058–1059PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Michael J. Sheriff
    • 1
    • 2
    Email author
  • Ben Dantzer
    • 3
  • Brendan Delehanty
    • 1
  • Rupert Palme
    • 4
  • Rudy Boonstra
    • 1
  1. 1.Centre for the Neurobiology of StressUniversity of Toronto ScarboroughTorontoCanada
  2. 2.Institute for Arctic BiologyUniversity of Alaska FairbanksFairbanksUSA
  3. 3.Department of ZoologyMichigan State UniversityEast LansingUSA
  4. 4.Department of Biomedical Sciences/BiochemistryUniversity of Veterinary MedicineViennaAustria

Personalised recommendations