, Volume 166, Issue 4, pp 973–984 | Cite as

Pulses of movement across the sea ice: population connectivity and temporal genetic structure in the arctic fox

  • Karin NorénEmail author
  • Lindsey Carmichael
  • Eva Fuglei
  • Nina E. Eide
  • Pall Hersteinsson
  • Anders Angerbjörn
Population ecology - Original Paper


Lemmings are involved in several important functions in the Arctic ecosystem. The Arctic fox (Vulpes lagopus) can be divided into two discrete ecotypes: “lemming foxes” and “coastal foxes”. Crashes in lemming abundance can result in pulses of “lemming fox” movement across the Arctic sea ice and immigration into coastal habitats in search for food. These pulses can influence the genetic structure of the receiving population. We have tested the impact of immigration on the genetic structure of the “coastal fox” population in Svalbard by recording microsatellite variation in seven loci for 162 Arctic foxes sampled during the summer and winter over a 5-year period. Genetic heterogeneity and temporal genetic shifts, as inferred by STRUCTURE simulations and deviations from Hardy–Weinberg proportions, respectively, were recorded. Maximum likelihood estimates of movement as well as STRUCTURE simulations suggested that both immigration and genetic mixture are higher in Svalbard than in the neighbouring “lemming fox” populations. The STRUCTURE simulations and AMOVA revealed there are differences in genetic composition of the population between summer and winter seasons, indicating that immigrants are not present in the reproductive portion of the Svalbard population. Based on these results, we conclude that Arctic fox population structure varies with time and is influenced by immigration from neighbouring populations. The lemming cycle is likely an important factor shaping Arctic fox movement across sea ice and the subsequent population genetic structure, but is also likely to influence local adaptation to the coastal habitat and the prevalence of diseases.


Arctic Lemming cycle Sea ice Immigration Microsatellites 



C. Krebs provided unpublished data on rodent density in the Canadian Arctic during 2001 and 2002, B. Sacks, N. Ryman and three anonymous referees provided constructive comments on earlier drafts of this paper. This project was supported by the Strategic Research Programme EkoKlim at Stockholm University, EU-LIFE to SEFALO+, World Wide Fund for Nature (WWF), Swedish Research Council (VR), the International Polar Year (IPY), Längmanska Kulturfonden, the Norwegian Polar Institute (NPI) and the University of Life Sciences Aas, Norway.


  1. Alerstam T, Hedenström A, Åkesson SA (2003) Long-distance migration: evolution and determinants. Oikos 103:247–260. doi: 10.1034/j.1600-0706.2003.12559.x CrossRefGoogle Scholar
  2. Angerbjörn A, Tannerfeldt M, Erlinge S (1999) Predator-prey relationships: arctic foxes and lemmings. J Anim Ecol 68:34–49. doi: 10.1046/j.1365-2656.1999.00258.x CrossRefGoogle Scholar
  3. Angerbjörn A, Hersteinsson P, Tannerfeldt M (2004) Arctic foxes: consequences of resource predictability in the Arctic fox—two life history strategies. In: Macdonald DW, Sillero-Zubiri S (eds) Biology and conservation of wild canids. Oxford University Press, Oxford, pp 163–172CrossRefGoogle Scholar
  4. Anthony RM (1997) Home ranges and migration of Arctic fox (Alopex lagopus) in Western Alaska. Arctic 50:147–157Google Scholar
  5. Anthony RM, Barten NL, Seiser PE (2000) Foods of arctic foxes (Alopex lagopus) during winter and spring in western Alaska. J Mammal 81:820–828. doi: 10.1644/1545-1542 CrossRefGoogle Scholar
  6. Beerli P (2008) Migrate version 3.0 Documentation. Available at:
  7. Beerli P, Felsenstein J (1999) Maximum-likelihood estimation of migration rates and effective population numbers in two populations using the coalescent approach. Genetics 152:763–773PubMedGoogle Scholar
  8. Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using coalescent approach. Proc Natl Acad Sci 98:4563–4568. doi: 10.1073/pnas.081068098 PubMedCrossRefGoogle Scholar
  9. Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455–457. doi: 10.1038/368455a0 PubMedCrossRefGoogle Scholar
  10. Bowen BS (1982) Temporal dynamics of microgeographic structure of genetic variation in Microtus californicus. J Mammal 63:25–638CrossRefGoogle Scholar
  11. Braestrup FW (1941) A study on the arctic fox in Greenland. Immigration, fluctuations in numbers based mainly on trading statistics. Meddelelser om Grønland 131:1–101Google Scholar
  12. Carmichael LE, Krizan J, Nagy JA, Fuglei E, Dumond M, Johnson D, Veitch A, Bertreaux D, Strobeck C (2007) Historical and ecological determinants of genetic structure in arctic canids. Mol Ecol 16:3466–3483. doi: 10.1111/j.1365-294X.2007.03381.x PubMedCrossRefGoogle Scholar
  13. Chirkova AF, Kostyaev LM, Rybalkin YV (1959) Peculiarities of the trapping and biology of arctic fox on southwestern coast of the Kara Sea in winter, 1956–57(in Russian). In: Proc All Union Institute Animal Material and Furs, p 18 Google Scholar
  14. Dalén L, Fuglei E, Hersteinsson P, Kapel CMO, Roth JD, Samelius G, Tannerfeldt M, Angerbjörn A (2005) Population history and genetic structure of a circumpolar species: the Arctic fox. Biol J Linn Soc 84:79–89Google Scholar
  15. Eide NE, Jepsen JU, Prestrud P (2004) Spatial organization of reproductive Arctic foxes Alopex lagopus: responses to changes in spatial and temporal availability of prey. J Anim Ecol 73:1056–1068. doi: 10.1111/j.0021-8790.2004.00885.x CrossRefGoogle Scholar
  16. Eide NE, Eid PM, Prestrud P, Swenson JE (2005) Dietary responses of arctic foxes (Alopex lagopus) to changing prey availability across an Arctic landscape. Wildl Biol 11:109–121. doi: 10.2981/0909-6396 CrossRefGoogle Scholar
  17. Flatla T, Bjorvatn B (1980) Rabiessmitte pa Svalbard- bakgrunn, hendelseforlop og humanmedisinske konsekvenser (in Norwegian). Tidskr Nor Lageforen 101:145–147Google Scholar
  18. Frafjord K (1993) Food habits of arctic foxes on the western coast of Svalbard. Arctic 46:49–54Google Scholar
  19. Frafjord K, Prestrud P (1992) Home range and movements of arctic foxes Alopex lagopus in Svalbard. Polar Biol 12:519–526. doi: 10.1007/BF00238191 Google Scholar
  20. Fredholm M, Winterø AK (1995) Variation of short tandem repeats within and between species belonging to the Canidae family. Mammal Genome 6:11–18. doi: 10.1007/BF00350887 CrossRefGoogle Scholar
  21. Fuglei E (2006) Arctic fox. In: Kovacs KM, Lydersen C (eds) Birds and mammals of Svalbard. Norwegian Polar Institute, Tromso, pp 88–89Google Scholar
  22. Fuglei E, Øritsland NA, Prestrud P (2003) Local variation in Arctic fox abundance on Svalbard, Norway. Polar Biol 26:93–98. doi: 10.1007/s00300-002-0458-8 Google Scholar
  23. Geffen E, Waidyaratne S, Dalén L, Angerbjörn A, Vila C et al (2007) Sea ice occurrence predicts genetic isolation in the Arctic fox. Mol Ecol 16:4241–4255Google Scholar
  24. Gilg O (2002) The summer decline of the collared lemming (Dicrostonyx groenlandicus) in high arctic Greenland. Oikos 99:499–510Google Scholar
  25. Gilg O, Sittler B, Hanski I (2009) Climate change and cyclic predator-prey population dynamics in the high Arctic. Global Change Biol 15:2634–2652. doi: 10.1111/j.1365-2486.2009.01927.x CrossRefGoogle Scholar
  26. Goltsman M, Kruchenkova EP, Sergeev S, Johnson PJ, Macdonald DW (2005) Effects of food availability on dispersal and cub sex ratio in the Mednyi Arctic fox. Behav Ecol Sociobiol 59:198–206. doi: 10.1007/s00265-005-0025-8 CrossRefGoogle Scholar
  27. Goudet J (1995) FSTAT: a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  28. Guo SW, Thompson EA (1992) Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48:359CrossRefGoogle Scholar
  29. Henttonen H, Fuglei E, Gower CN, Haukisalmi V, Ims RA, Niemimaa J, Yocooz N (2001) Echinococcus multilocularis on Svalbard: introduction of an intermediate host has enabled the local life-cycle. Parasitology 123:547–552. doi: 10.1017}S0031182001008800 PubMedCrossRefGoogle Scholar
  30. Hersteinsson P, Macdonald DW (1982) Some comparisons between red and arctic foxes, Vulpes vulpes and Alopex lagopus, as revealed by radio-tracking. Symp Zool Soc Lond 49:259–289Google Scholar
  31. Ims R, Fuglei E (2005) Trophic interaction cycles in tundra ecosystems and the impact of climate change. Bioscience 55:311–322. doi: 10.1641/0006-3568 CrossRefGoogle Scholar
  32. Johnson N, Dicker A, Mork T, Marston DA, Fooks AR, Tryland M, Fuglei E, Müller T (2007) Phylogenetic comparison of rabies viruses from disease outbreaks on the Svalbard islands. Vector Borne Zoonot Dis 7:457–460. doi: 10.1089/vbz.2006.0555 CrossRefGoogle Scholar
  33. Kokorev YI, Kuksov VA (2002) Population dynamics of lemmings, Lemmus sibirica and Dicrostonyx torquatus, and Arctic fox Alopex lagopus on the Taimyr peninsula, Siberia, 1960–2001. Ornis Svecica 12:139–143Google Scholar
  34. Krebs CJ, Kenney AJ, Gilbert S, Danell K, Angerbjörn A, Erlinge S, Bromley RG, Shank C, Carriere S (2002) Synchrony in lemming and vole populations in the Canadian Arctic. Can J Zool 80:1323–1333. doi: 10.1139/Z02-120 CrossRefGoogle Scholar
  35. Landguth EL, Cushman SA, Schwartz MK, McKelvey KS, Murphy M, Luikart G (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191. doi: 10.1111/j.1365-294X.2010.04808.x CrossRefGoogle Scholar
  36. Mehlum F, Gjertz I (1998) The occurrence of the snowy owl Nyctea scandiaca in Svalbard. Fauna Norv Ser C 21:7–16Google Scholar
  37. Meinke PG, Kapel CMO, Arctander P (2001) Genetic differentiation of populations of Greenlandic Arctic fox. Polar Res 20:75–83. doi: 10.1111/j.1751-8369.2001.tb00040.x CrossRefGoogle Scholar
  38. Mörk T, Prestrud P (2004) Arctic rabies—a review. Acta Vet Scand 45:1–9. doi: 10.1186/1751-0147-45-1 PubMedCrossRefGoogle Scholar
  39. Muñoz-Fuentes V, Darimont CT, Wayne RK, Paquet PC, Leonard JA (2009) Ecological factors drive differentiation in wolves from British Columbia. J Biogeogr 36:1516–1531. doi: 10.1111/j.1365-2699.2008.02067.x CrossRefGoogle Scholar
  40. Noor MAF, Pascual M, Smith KR (2000) Genetic variation in the spread of Drosophila subobscura from a nonequilibrium population. Evolution 54:696–703. doi: 10.1111/j.0014-3820.2000.tb00071.x PubMedGoogle Scholar
  41. Norén K, Carmichael L, Dalén L, Hersteinsson P, Samelius G, Fuglei E, Kapel CMO, Menyushina I, Strobeck C, Angerbjörn A (2010) Arctic fox (Vulpes lagopus) population structure: circumpolar patterns and processes. Oikos. doi: 10.1111/j.1600-0706.2010.18766.x
  42. Ostrander EA, Sprague GF Jr, Rine J (1993) Identification and characterization of dinucleotide repeat (CA)n markers for genetic mapping in dog. Genomics 16:207–213Google Scholar
  43. Ostrander EA, Mapa FA, Yee M, Rine J (1995) One hundred and one simple sequence repeat-based markers for the canine genome. Mamm Genome 6:192–195Google Scholar
  44. Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354. doi: 10.1111/j.1365-294X.1995.tb00227.x PubMedCrossRefGoogle Scholar
  45. Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65. doi: 10.1046/j.1365-294X.2004.02008.x PubMedCrossRefGoogle Scholar
  46. Pagh S, Hersteinsson P (2008) Difference in diet and age structure of blue and white Arctic foxes (Vulpes lagopus) in the Disko Bay area, West Greenland. Polar Res 27:44–51. doi: 10.1111/j.1751-8369.2008.00042.x CrossRefGoogle Scholar
  47. Palstra FP, Ruzzante DE (2010) A temporal perspective on population structure and gene flow in Atlantic salmon (Salmo salar) in Newfoundland, Canada. Can J Fish Aquat Sci 67:225–242CrossRefGoogle Scholar
  48. Pamperin NJ, Follman EH, Person BT (2008) Sea-ice use by arctic foxes in northern Alaska. Polar Biol 31:1421–1426. doi: 10.1007/s00300-008-0481-5 CrossRefGoogle Scholar
  49. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi: 10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  50. Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A (2004) GeneClass2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539Google Scholar
  51. Prestrud P (1992) Food habits and observations of the hunting behaviour of arctic foxes, Alopex lagopus, in Svalbard. Can Field Nat 106:225–236Google Scholar
  52. Prestrud P, Nilssen K (1992) Fat deposition and seasonal variation in body composition of arctic foxes in Svalbard. J Wildl Manage 56:221–233CrossRefGoogle Scholar
  53. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. doi: 10.1111/j.1471-8286.2007.01758.x PubMedGoogle Scholar
  54. Pullainen E (1965) On the distribution and migrations of the Arctic fox (Alopex lagopus L.) in Finland. Aquilo Ser Zool 2:25–26Google Scholar
  55. Queller DC, Goodnight KF (1989) Estimation of genetic relatedness using allozyme data. Evolution 43:258–275CrossRefGoogle Scholar
  56. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  57. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225Google Scholar
  58. Roth JD (2002) Temporal variability in arctic fox diet as reflected in stable-carbon isotopes; the importance of sea ice. Oecologia 133:70–77. doi: 10.1007/s00442-002-1004-7 CrossRefGoogle Scholar
  59. Roth JD (2003) Variability in marine resources affects arctic fox population dynamics. J Anim Ecol 72:668–676. doi: 10.1046/j.1365-2656.2003.00739.x CrossRefGoogle Scholar
  60. Sacks BN, Mitchell BR, Williams CL, Ernest HB (2005) Coyote movements and social structure along a cryptic population genetic subdivision. Mol Ecol 14:1241–1249. doi: 10.1111/j.1365-294X.2005.02473.x PubMedCrossRefGoogle Scholar
  61. Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629. doi: 10.1111/j.1461-0248.2006.00889.x PubMedCrossRefGoogle Scholar
  62. Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792. doi: 10.1126/science.3576198 PubMedCrossRefGoogle Scholar
  63. Slatkin M, Excoffier L (1996) Testing for linkage disequilibrium in genotypic data using the EM algorithm. Heredity 76:377–383. doi: 10.1038/hdy.1996.55 PubMedCrossRefGoogle Scholar
  64. Soloviev MY (2010) Rodent abundance report 1997–2002. In: Soloviev, Tomkovich P (eds.) Arctic birds breeding conditions survey. Online database: Accessed 12 May 2010
  65. Stenseth NC, Ims RA (1993) Population dynamics of lemmings: temporal and spatial variations. In: Stenseth NC, Ims RA (eds) The biology of lemmings. Academic Press, London, pp 61–97Google Scholar
  66. Stroeve J, Holland JM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34:1–5. doi: 10.1029/2007GL029703 CrossRefGoogle Scholar
  67. Tannerfeldt M, Angerbjörn A (1998) Fluctuating resources and the evolution of litter size in the arctic fox. Oikos 83:545–559CrossRefGoogle Scholar
  68. Tarroux A, Berteaux D, Bêty J (2010) Northern nomads: ability for extensive movements in adult arctic foxes. Polar Biol 33:1021–1026. doi: 10.1007/s00300-010-0780-5 CrossRefGoogle Scholar
  69. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi: 10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  70. Vibe C (1967) Arctic animals in relation to climatic fluctuations. The arctic fox. Meddelelser om Grønland 170:101–150Google Scholar
  71. Wahlund S (1928) Zusammensetzung von Population und Korrelationserscheinung vom Standpunkt der Vererbungslehre aus betrachtet. Hereditas 11:65–106CrossRefGoogle Scholar
  72. Wang J (2003) Application to the one-migrant-per-generation-rule to conservation and management. Conserv Biol 18:332–343CrossRefGoogle Scholar
  73. Whitlock MC (1992) Temporal fluctuations in demographic parameters and the genetic variation among populations. Evolution 46:608–615CrossRefGoogle Scholar
  74. Wrigley RE, Hatch DRM (1976) Arctic fox migrations in Manitoba. Arctic 29:147–158Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Karin Norén
    • 1
    Email author
  • Lindsey Carmichael
    • 2
  • Eva Fuglei
    • 3
  • Nina E. Eide
    • 4
  • Pall Hersteinsson
    • 5
  • Anders Angerbjörn
    • 1
  1. 1.Department of ZoologyStockholm UniversityStockholmSweden
  2. 2.Department of Biological SciencesUniversity of AlbertaEdmontonCanada
  3. 3.Norwegian Polar InstituteTromsøNorway
  4. 4.Norwegian Institute for Nature ResearchTrondheimNorway
  5. 5.Institute of BiologyUniversity of IcelandReykjavikIceland

Personalised recommendations