Advertisement

Oecologia

, Volume 166, Issue 2, pp 327–336 | Cite as

Causes and consequences of fine-scale breeding dispersal in a female-philopatric species

  • Markus ÖstEmail author
  • Aleksi Lehikoinen
  • Kim Jaatinen
  • Mikael Kilpi
Population ecology - Original Paper

Abstract

The potentially confounded effects of factors affecting breeding dispersal have rarely been simultaneously examined. The consequences of breeding dispersal are even less studied, presenting a paradox: breeding dispersal seldom seems to improve breeding success, despite its presumed adaptiveness. We studied the causes and consequences of breeding dispersal in female-philopatric eiders (Somateria mollissima) in relation to the spatiotemporal predictability of nest success. Previous nest fate, breeding experience, and breeding density simultaneously affected breeding dispersal. Dispersal distances were longer among inexperienced breeders and after failed breeding. Individual dispersal distances decreased with increasing nest-site-specific breeding density, whereas island-specific nesting success peaked at intermediate densities. The fate of neighbouring nests (‘public information’) did not influence dispersal. Breeding dispersal was unrelated to subsequent hatching success, controlling for individual quality (body condition, breeding experience, previous nest fate), while it delayed hatch date, which is likely to impair reproductive success. This delay may result from the loss of acquired information of local breeding conditions, prolonging nest prospecting and establishment, also helping explain why breeding dispersal did not increase at high breeding densities, despite a potential reduction in nesting success. In long-lived species, however, dispersal-induced reductions in reproductive output in one season could be offset by improved parental survival prospects. Careful nest prospecting may be profitable, because overall nest success had a strong island-specific component but showed weak temporal variation, and successive individual nest fates were predictable between years. Once a safe nest site is found, females may breed at the same place successfully for many years.

Keywords

Breeding time Habitat selection Predation risk Site fidelity Somateria mollissima 

Notes

Acknowledgments

Tvärminne Zoological Station provided facilities. We thank several ornithologists for field assistance, and the Academy of Finland (grant no. 128039 to K.J. and M.Ö.) and Maj and Tor Nessling Foundation (A.L.) for funding. All experiments comply with the current laws of Finland.

References

  1. Aars J, Ims RA (2000) Population dynamic and genetic consequences of spatial density-dependent dispersal in patchy populations. Am Nat 155:252–265. doi: 10.1086/303317 PubMedCrossRefGoogle Scholar
  2. Anderson MG, Rhymer JM, Rohwer EC (1992) Philopatry, dispersal, and the genetic structure of waterfowl populations. In: Batt BDJ et al (eds) Ecology and management of breeding waterfowl. University of Minnesota Press, Minneapolis, pp 365–395Google Scholar
  3. Aparicio JM, Bonal R, Muñoz A (2007) Experimental test on public information use in the colonial lesser kestrel. Evol Ecol 21:783–800. doi: 10.1007/s10682-006-9151-7 CrossRefGoogle Scholar
  4. Beletsky LD, Orians GH (1991) Effects of breeding experience and familiarity on site fidelity in female red-winged blackbirds. Ecology 72:787–796. doi: 10.2307/1940581 CrossRefGoogle Scholar
  5. Blums P, Mednis A, Clark RG (1997) Effect of incubation body mass on reproductive success and survival of two European diving ducks: a test of the nutrient limitation hypothesis. Condor 99:916–925. doi: 10.2307/1370142 CrossRefGoogle Scholar
  6. Blums P, Nichols JD, Lindberg MS, Hines JE, Mednis A (2003) Factors affecting breeding dispersal of European ducks on Engure marsh, Latvia. J Anim Ecol 72:292–307. doi: 10.1046/j.1365-2656.2003.00698.x CrossRefGoogle Scholar
  7. Bolduc F, Guillemette M (2003) Incubation constancy and mass loss in the common eider Somateria mollissima. Ibis 145:329–332. doi: 10.1046/j.1474-919X.2003.00143.x CrossRefGoogle Scholar
  8. Boulinier T, Mccoy KD, Yoccoz NG, Gasparini J, Tveraa T (2008) Public information affects breeding dispersal in a colonial bird: kittiwakes cue on neighbours. Biol Lett 4:538–540. doi: 10.1098/rsbl.2008.0291 PubMedCrossRefGoogle Scholar
  9. Brinkhof MWG, Cavé AJ, Hage FJ, Verhulst S (1993) Timing of reproduction and fledging success in the coot Fulica atra: evidence for a causal relationship. J Anim Ecol 62:577–587. doi: 10.2307/5206 CrossRefGoogle Scholar
  10. Brown CR, Brown MB, Brazeal KR (2008) Familiarity with breeding habitat improves daily survival in colonial cliff swallows. Anim Behav 76:1201–1210. doi: 10.1016/j.anbehav.2008.03.028 PubMedCrossRefGoogle Scholar
  11. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  12. Bustnes JO, Erikstad KE (1993) Site fidelity in breeding common eider Somateria mollissima females. Ornis Fenn 70:11–16Google Scholar
  13. Calabuig G, Ortego J, Cordero PJ, Aparicio JM (2008) Causes, consequences and mechanisms of breeding dispersal in the colonial lesser kestrel, Falco naumanni. Anim Behav 76:1989–1996. doi: 10.1016/j.anbehav.2008.08.019 CrossRefGoogle Scholar
  14. Clark RG, Shutler D (1999) Avian habitat selection: pattern from process in nest-site use by ducks? Ecology 80:272–287. doi: 10.1890/0012-9658(1999)080[0272:AHSPFP]2.0.CO;2 CrossRefGoogle Scholar
  15. Clobert J, Danchin E, Dhondt AA, Nichols JD (2001) Dispersal. Oxford University Press, OxfordGoogle Scholar
  16. Daan S, Tinbergen J (1997) Adaptation of life histories. In: Krebs JR, Davies NB (eds) Behavioural ecology. Blackwell, Oxford, pp 311–333Google Scholar
  17. Danchin E, Cam E (2002) Can non-breeding be a cost of breeding dispersal? Behav Ecol Sociobiol 51:153–163. doi: 10.1007/s00265-001-0423-5 CrossRefGoogle Scholar
  18. Danchin E, Boulinier T, Massot M (1998) Conspecific reproductive success and breeding habitat selection: implications for the study of coloniality. Ecology 79:2415–2428. doi: 10.1890/0012-9658(1998)079[2415:CRSABH]2.0.CO;2 CrossRefGoogle Scholar
  19. Devries JH, Brook RW, Howerter DW, Anderson MG (2008) Effects of spring body condition and age on reproduction in mallards (Anas platyrhynchos). Auk 125:618–628. doi: 10.1525/auk.2008.07055 CrossRefGoogle Scholar
  20. Dingemanse NJ, Both C, van Noordwijk AJ, Rutten AL, Drent PJ (2003) Natal dispersal and personalities in great tits (Parus major). Proc R Soc Lond B 270:741–747. doi: 10.1098/rspb.2002.2300 CrossRefGoogle Scholar
  21. Fast PLF, Gilchrist HG, Clark RG (2010) Nest-site materials affect nest-bowl use by common eiders (Somateria mollissima). Can J Zool 88:214–218. doi: 10.1139/Z09-131 CrossRefGoogle Scholar
  22. Forero MG, Donázar JA, Blas J, Hiraldo F (1999) Causes and consequences of territory change and breeding dispersal distance in the black kite. Ecology 80:1298–1310. doi: 10.1890/0012-9658(1999)080[1298:CACOTC]2.0.CO;2 CrossRefGoogle Scholar
  23. Greenwood PJ (1982) The natal and breeding dispersal of birds. Annu Rev Ecol Syst 13:1–21. doi: 10.1016/S0003-3472(80)80103-5 CrossRefGoogle Scholar
  24. Hario M, Mazerolle MJ, Saurola P (2009) Survival of female common eiders Somateria m mollissima in a declining population of the northern Baltic Sea. Oecologia 159:747–756. doi: 10.1007/s00442-008-1265-x PubMedCrossRefGoogle Scholar
  25. Hazlitt SL, Sigg DP, Eldridge MDB, Goldizen AW (2006) Restricted mating dispersal and strong breeding group structure in a mid-sized marsupial mammal (Petrogale penicillata). Mol Ecol 15:2997–3007. doi: 10.1111/j.1365-294X.2006.02985.x PubMedCrossRefGoogle Scholar
  26. Hepp GR, Kennamer RA (1992) Characteristics and consequences of nest-site fidelity in wood ducks. Auk 109:812–818Google Scholar
  27. Hoover JP (2003) Decision rules for site fidelity in a migratory bird, the prothonotary warbler. Ecology 84:416–430. doi: 10.1890/0012-9658(2003)084[0416:DRFSFI]2.0.CO;2 CrossRefGoogle Scholar
  28. Kilpi M, Lindström K (1997) Habitat-specific clutch size and cost of incubation in common eiders, Somateria mollissima. Oecologia 111:297–301. doi: 10.1007/s004420050238 CrossRefGoogle Scholar
  29. Kim SY, Torres R, Drummond H (2009) Simultaneous positive and negative density-dependent dispersal in a colonial bird species. Ecology 90:230–239. doi: 10.1890/08-0133.1 PubMedCrossRefGoogle Scholar
  30. Lehikoinen A, Christensen TK, Öst M, Kilpi M, Saurola P, Vattulainen A (2008) Large-scale change in the sex ratio of a declining eider Somateria mollissima population. Wildl Biol 14:288–301. doi: 10.2981/0909-6396(2008)14[288:LCITSR]2.0.CO;2 CrossRefGoogle Scholar
  31. Martin TE, Scott J, Menge C (2000) Nest predation increases with parental activity: separating nest site and parental activity effects. Proc R Soc Lond B 267:2287–2293. doi: 10.1098/rspb.2000.1119 CrossRefGoogle Scholar
  32. McKinnon L, Gilchrist HG, Scribner KT (2006) Genetic evidence for kin-based female social structure in common eiders (Somateria mollissima). Behav Ecol 17:614–621. doi: 10.1093/beheco/ark002 CrossRefGoogle Scholar
  33. Newton I (2001) Causes and consequences of breeding dispersal in the sparrowhawk Accipiter nisus. Ardea 89:143–154Google Scholar
  34. Öst M, Steele BB (2010) Age-specific nest-site preference and success in eiders. Oecologia 162:59–69. doi: 10.1007/s00442-009-1444-4 PubMedCrossRefGoogle Scholar
  35. Öst M, Vitikainen E, Waldeck P, Sundström L, Lindström K, Hollmén T, Franson JC, Kilpi M (2005) Eider females form non-kin brood-rearing coalitions. Mol Ecol 14:3903–3908. doi: 10.1111/j.1365-294X.2005.02694.x PubMedCrossRefGoogle Scholar
  36. Öst M, Wickman M, Matulionis E, Steele B (2008a) Habitat-specific clutch size and cost of incubation in eiders reconsidered. Oecologia 158:205–216. doi: 10.1007/s00442-008-1139-2 PubMedCrossRefGoogle Scholar
  37. Öst M, Smith BD, Kilpi M (2008b) Social and maternal factors affecting duckling survival in eiders Somateria mollissima. J Anim Ecol 77:315–325. doi: 10.1111/j.1365-2656.2007.01348.x PubMedCrossRefGoogle Scholar
  38. Pöysä H (1999) Conspecific nest parasitism is associated with inequality in nest predation risk in the common goldeneye (Bucephala clangula). Behav Ecol 10:533–540. doi: 10.1093/beheco/10.5.533 CrossRefGoogle Scholar
  39. Pöysä H (2006) Public information and conspecific nest parasitism in goldeneyes: targeting safe nests by parasites. Behav Ecol 17:459–465. doi: 10.1093/beheco/arj049 CrossRefGoogle Scholar
  40. Robbins AM, Stoinski TS, Fawcett KA, Robbins MM (2009) Does dispersal cause reproductive delays in female mountain gorillas? Behaviour 146:525–549. doi: 10.1163/156853909X426354 CrossRefGoogle Scholar
  41. Schaub M, von Hirschheydt J (2009) Effect of current reproduction on apparent survival, breeding dispersal, and future reproduction in barn swallows assessed by multistate capture-recapture models. J Anim Ecol 78:625–635. doi: 10.1111/j.1365-2656.2008.01508.x PubMedCrossRefGoogle Scholar
  42. Serrano D, Tella JL, Forero MG, Donázar JA (2001) Factors affecting breeding dispersal in the facultatively colonial lesser kestrel: individual experience vs conspecific cues. J Anim Ecol 70:568–578. doi: 10.1046/j.1365-2656.2001.00512.x CrossRefGoogle Scholar
  43. Shields WM (1984) Factors affecting nest and site fidelity in Adirondack barn swallows (Hirundo rustica). Auk 101:780–789Google Scholar
  44. Shutler D, Clark RG (2003) Causes and consequences of tree swallow (Tachycineta bicolor) dispersal in Saskatchewan. Auk 120:619–631. doi: 10.1642/0004-8038(2003)120[0619:CACOTS]2.0.CO;2 CrossRefGoogle Scholar
  45. Sinnott RW (1984) Virtues of the haversine. Sky Telesc 68:159Google Scholar
  46. Sonsthagen SA, Talbot SL, Lanctot RB, Scribner KT, McCracken KG (2009) Hierarchical spatial genetic structure of common eiders (Somateria mollissima) breeding along a migratory corridor. Auk 126:744–754. doi: 10.1525/auk.2009.08224 CrossRefGoogle Scholar
  47. Sonsthagen SA, Talbot SL, Lanctot RB, McCracken KG (2010) Do common eiders nest in kin groups? Microgeographic genetic structure in a philopatric sea duck. Mol Ecol 19:647–657. doi: 10.1111/j.1365-294X.2009.04495.x PubMedCrossRefGoogle Scholar
  48. Steiner UK, Gaston AJ (2005) Reproductive consequences of natal dispersal in a highly philopatric seabird. Behav Ecol 16:634–639. doi: 10.1093/beheco/ari035 CrossRefGoogle Scholar
  49. Swennen C (1990) Dispersal and migratory movements of eiders Somateria mollissima breeding in the Netherlands. Ornis Scand 21:17–27. doi: 10.2307/3676374 CrossRefGoogle Scholar
  50. Switzer PV (1993) Site fidelity in predictable and unpredictable habitats. Evol Ecol 7:533–555. doi: 10.1007/BF01237820 CrossRefGoogle Scholar
  51. Tiedemann R, von Kistowski KG, Noer H (1999) On sex-specific dispersal and mating tactics in the common eider Somateria mollissima as inferred from the genetic structure of breeding colonies. Behaviour 136:1145–1155. doi: 10.1163/156853999501801 CrossRefGoogle Scholar
  52. Travis JMJ, Dytham C (1998) The evolution of dispersal in a metapopulation: a spatially explicit, individual-based model. Proc R Soc Lond B 265:17–23. doi: 10.1098/rspb.1998.0258 CrossRefGoogle Scholar
  53. Valone TJ (1989) Group foraging, public Information, and patch estimation. Oikos 56:357–363. doi: 10.2307/3565621 CrossRefGoogle Scholar
  54. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New YorkGoogle Scholar
  55. Ward MP, Weatherhead P (2005) Sex-specific differences in site fidelity and the cost of dispersal in yellow-headed blackbirds. Behav Ecol Sociobiol 59:108–114. doi: 10.1007/s00265-005-0015-x CrossRefGoogle Scholar
  56. Wiggett DR, Boag DA (1993) Annual reproductive success in three cohorts of columbian ground-squirrels: founding immigrants, subsequent immigrants, and natal residents. Can J Zool 71:1577–1584. doi: 10.1139/z93-223 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Markus Öst
    • 1
    Email author
  • Aleksi Lehikoinen
    • 2
  • Kim Jaatinen
    • 1
  • Mikael Kilpi
    • 3
  1. 1.ARONIA Coastal Zone Research TeamÅbo Akademi University and Novia University of Applied SciencesEkenäsFinland
  2. 2.Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
  3. 3.ARONIA Centre for Environmental ResearchEkenäsFinland

Personalised recommendations