, Volume 165, Issue 2, pp 511–520 | Cite as

Facultative nitrogen fixation by canopy legumes in a lowland tropical forest

  • Alexander R. Barron
  • Drew W. Purves
  • Lars O. Hedin
Ecosystem ecology - Original Paper


Symbiotic dinitrogen (N2) fixation is often invoked to explain the N richness of tropical forests as ostensibly N2-fixing trees can be a major component of the community. Such arguments assume N2 fixers are fixing N when present. However, in laboratory experiments, legumes consistently reduce N2 fixation in response to increased soil N availability. These contrasting views of N2 fixation as either obligate or facultative have drastically different implications for the N cycle of tropical forests. We tested these models by directly measuring N2-fixing root nodules and nitrogenase activity of individual canopy-dominant legume trees (Inga sp.) across several lowland forest types. Fixation was substantial in disturbed forests and some gaps but near zero in the high N soils of mature forest. Our findings suggest that canopy legumes closely regulate N2 fixation, leading to large variations in N inputs across the landscape, and low symbiotic fixation in mature forests despite abundant legumes.


Ecosystem Plant strategy Gap Nitrostat Nitrogen limitation Nitrogen Succession Inga Nutrient cycling 

Supplementary material

442_2010_1838_MOESM1_ESM.pdf (1 mb)
Supplementary material 1 (PDF 1065 kb)
442_2010_1838_MOESM2_ESM.pdf (67 kb)
Supplementary material 2 (PDF 67 kb)
442_2010_1838_MOESM3_ESM.pdf (130 kb)
Supplementary material 3 (PDF 129 kb)
442_2010_1838_MOESM4_ESM.pdf (157 kb)
Supplementary material 4 (PDF 156 kb)


  1. Aber J et al (1998) Nitrogen saturation in temperate forest ecosystems—hypotheses revisited. Bioscience 48:921–934CrossRefGoogle Scholar
  2. Ågren GI, Bosatta E (1988) Nitrogen saturation of terrestrial ecosystems. Environ Pollut 54:185–197CrossRefPubMedGoogle Scholar
  3. Alpkem (1992) Ammonia in seawater. In: Document No. 000674. Alpkem, WilsonvilleGoogle Scholar
  4. Anderson MD, Ruess RW, Uliassi DD, Mitchell JS (2004) Estimating N2 fixation in two species of Alnus in interior Alaska using acetylene reduction and 15N2 uptake. Ecoscience 11:102–112Google Scholar
  5. Barron AR (2007) Patterns and controls on nitrogen fixation in a lowland tropical rain forest, Panama. PhD thesis, Princeton University, PrincetonGoogle Scholar
  6. Barron AR, Wurzburger N, Bellinger JP, Wright SJ, Kraepiel AML, Hedin LO (2009) Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nat Geosci 2:42–45CrossRefGoogle Scholar
  7. Bergersen FJ (1970) Quantitative relationship between nitrogen fixation and acetylene-reduction assay. Aust J Biol Sci 23:1015Google Scholar
  8. Binkley D (1992) Mixtures of nitrogen2-fixing and non-nitrogen2-fixing tree species. In: Cannell M, Malcolm D, Robertson PA (eds) Ecology of mixed species stands. Blackwell, Oxford, pp 99–123Google Scholar
  9. Boddey RM, Peoples MB, Palmer B, Dart PJ (2000) Use of the N-15 natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutr Cycl Agroecosyst 57:235–270CrossRefGoogle Scholar
  10. Braman RS, Hendrix SA (1989) Nanogram nitrite and nitrate determination in environmental and biological-materials by vanadium(III) reduction with chemi-luminescence detection. Anal Chem 61:2715–2718CrossRefPubMedGoogle Scholar
  11. Bruijnzeel LA (1991) Nutrient input output budgets of tropical forest ecosystems—a review. J Trop Ecol 7:1–24CrossRefGoogle Scholar
  12. Cavalier J (1992) Fine root biomass and soil properties in a semi-deciduous and a lower montane rain forest in Panama. Plant Soil 142:187–201CrossRefGoogle Scholar
  13. Cleveland CC et al (1999) Global patterns of terrestrial biological nitrogen (N-2) fixation in natural ecosystems. Glob Biogeochem Cycles 13:623–645CrossRefGoogle Scholar
  14. Davidson EA et al (2007) Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447:995CrossRefPubMedGoogle Scholar
  15. de Faria SM, de Lima HC (1998) Additional studies of the nodulation status of legume species in Brazil. Plant Soil 200:185–192CrossRefGoogle Scholar
  16. Denslow JS, Guzman S (2000) Variation in stand structure, light and seedling abundance across a tropical moist forest chronosequence, Panama. J Veg Sci 11:201–212CrossRefGoogle Scholar
  17. Forrester DI, Bauhus J, Cowie AL, Vanclay JK (2006) Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. For Ecol Manage 233:211–230CrossRefGoogle Scholar
  18. Fujikake H, Yashima H, Sato T, Ohtake N, Sueyoshi K, Ohyama T (2002) Rapid and reversible nitrate inhibition of nodule growth and N-2 fixation activity in soybean (Glycine max (L.) Merr.). Soil Sci Plant Nutr 48:211–217Google Scholar
  19. Gehring C, Vlek PLG (2004) Limitations of the N-15 natural abundance method for estimating biological nitrogen fixation in Amazonian forest legumes. Basic Appl Ecol 5:567–580CrossRefGoogle Scholar
  20. Gentry AH (1988) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann Mo Bot Gard 75:1–34CrossRefGoogle Scholar
  21. Gerber S, Hedin LO, Oppenheimer M, Pacala SW, Shevliakova E (2010) Nitrogen cycling and feedbacks in a global dynamic land model. Glob Biogeochem Cycles 24:GB1001CrossRefGoogle Scholar
  22. Gutschick VP (1981) Evolved strategies in nitrogen acquisition by plants. Am Nat 118:607–637CrossRefGoogle Scholar
  23. Harms KE, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50-ha neotropical plot. J Ecol 89:947–959CrossRefGoogle Scholar
  24. Hartwig UA (1998) The regulation of symbiotic N2 fixation: a conceptual model of N feedback from the ecosystem to the gene expression level. Perspect Plant Ecol Evol Syst 1:92–120CrossRefGoogle Scholar
  25. Hedin LO, Vitousek PM, Matson PA (2003) Pathways and implications of nutrient losses during four million years of tropical forest ecosystem development. Ecology 84:2231–2255CrossRefGoogle Scholar
  26. Hedin LO, Brookshire ENJ, Menge DNL, Barron AR (2009) The nitrogen paradox in tropical forest ecosystems. Annu Rev Ecol Evol Syst 40:613–635CrossRefGoogle Scholar
  27. Hilborn R, Mangel M (1997) The ecological detective. Princeton University Press, PrincetonGoogle Scholar
  28. Högberg P, Alexander IJ (1995) Roles of root symbioses in african woodland and forest—evidence from N-15 abundance and foliar analysis. J Ecol 83:217–224CrossRefGoogle Scholar
  29. Houlton BZ, Wang YP, Vitousek PM, Field CB (2008) A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:327–330CrossRefPubMedGoogle Scholar
  30. Ingestad T (1980) Growth, nutrition, and nitrogen-fixation in Grey Alder at varied rate of nitrogen addition. Physiol Plant 50:353–364CrossRefGoogle Scholar
  31. Jenny H (1950) Causes of the high nitrogen and organic matter content of certain tropical forest soils. Soil Sci 69:63–69CrossRefGoogle Scholar
  32. John R et al (2007) Soil nutrients influence spatial distributions of tropical tree species. Proc Natl Acad Sci USA 104:864–869CrossRefPubMedGoogle Scholar
  33. Kern J, Darwich A, Furch K, Junk WJ (1996) Seasonal denitrification in flooded and exposed sediments from the Amazon floodplain at Lago Camaleão. Microb Ecol 32:47–57CrossRefPubMedGoogle Scholar
  34. Koponen P, Nygren P, Domenach AM, Le Roux C, Saur E, Roggy JC (2003) Nodulation and dinitrogen fixation of legume trees in a tropical freshwater swamp forest in French Guiana. J Trop Ecol 19:655–666CrossRefGoogle Scholar
  35. Kreibich H, Kern J, de Camargo PB, Moreira MZ, Victoria RL, Werner D (2006) Estimation of symbiotic N2 fixation in an Amazon floodplain forest. Oecologia (Berl) 147:359–368CrossRefGoogle Scholar
  36. McHargue LA (1999) Factors affecting the nodulation and growth of tropical woody legume seedlings. PhD dissertation, Florida International University, MiamiGoogle Scholar
  37. McKey D (1994) Legumes and nitrogen: the evolutionary ecology of a nitrogen demanding lifestyle. In: Sprent JI, McKey D (eds) Advances in legume systematics 5: the nitrogen factor. Royal Botanic Garden, Kew, pp 211–228Google Scholar
  38. Menge DNL, Hedin LO (2009) Nitrogen fixation in different biogeochemical niches along a 120,000-year chronosequence in New Zealand. Ecology 90:2190–2220CrossRefPubMedGoogle Scholar
  39. Menge DNL, Levin SA, Hedin LO (2009) Facultative versus obligate nitrogen fixation strategies and their ecosystem consequences. Am Nat 174:465–477CrossRefPubMedGoogle Scholar
  40. Minchin FR, Witty JF, Sheehy JE, Muller M (1983) A major error in the acetylene reduction assay: decreases in nodular nitrogenase activity under assay conditions. J Exp Bot 34:641–649CrossRefGoogle Scholar
  41. Moriera FMS, Franco AA (1994) Rhizobia-host interactions in tropical ecosystems in Brazil. In: Sprent JI, McKey D (eds) Advances in legume systematics. Part 5. The nitrogen factor, vol 5. Royal Botanic Gardens, Kew, pp 63–74Google Scholar
  42. Moriera FMS, Da Silva MF, De Faria SM (1992) Occurence of nodulation in legume species in the Amazon region of Brazil. New Phytol 121Google Scholar
  43. Neill C, Piccolo MC, Cerri CC, Steudler PA, Melilo JA (2006) Soil solution nitrogen losses during clearing of lowland Amazon forest for pasture. Plant Soil 281:233–245CrossRefGoogle Scholar
  44. Pastor J, Binkley D (1998) Nitrogen fixation and the mass balances of carbon and nitrogen in ecosystems. Biogeochemistry 43:63–78CrossRefGoogle Scholar
  45. Pearson HL, Vitousek PM (2001) Stand dynamics, nitrogen accumulation, and symbiotic nitrogen fixation in regenerating stands of Acacia koa. Ecol Appl 11:1381–1394CrossRefGoogle Scholar
  46. Pons TL, Perreijn K, van Kessel C, Werger MJA (2006) Symbiotic nitrogen fixation in a tropical rainforest: N-15 natural abundance measurements supported by experimental isotopic enrichment. New Phytol 173:154–167CrossRefGoogle Scholar
  47. Roskoski JP, Van Kessel C (1985) Annual, seasonal and diel variation in nitrogen-fixing activity by Inga jinicuil, a tropical leguminous tree. Oikos 44:306–312CrossRefGoogle Scholar
  48. Saur E, Bonheme I, Nygren P, Imbert D (1998) Nodulation of Pterocarpus officinalis in the swamp forest of Guadeloupe (Lesser Antilles). J Trop Ecol 14:761–770CrossRefGoogle Scholar
  49. Sprent JI (2005) Nodulated legume trees. In: Werner D, Newton WE (eds) Nitrogen fixation in agriculture, forestry and the environment. Springer, Netherlands, pp 113–141CrossRefGoogle Scholar
  50. Sprent JI (2009) Legume nodulation. Wiley-Blackwell, United Kingdom, 200 ppGoogle Scholar
  51. Sylvester-Bradley R, De Oliveira LA, Filho JAD, Stjohn TV (1980) Nodulation of legumes, nitrogenase activity of roots and occurrence of nitrogen-fixing Azospirillum sp. in representative soils of central Amazonia. Agro-Ecosystems 6:249–266CrossRefGoogle Scholar
  52. Van Kessel C, Burris RH (1983) Effect of H-2 evolution on N-15(2) fixation, C2H2 reduction and relative efficiency of leguminous symbionts. Physiol Plant 59:329–334CrossRefGoogle Scholar
  53. Visser S, Leenders J (2001) The recovery of mineralization in gaps of different size. In: Van Dam O (ed) Forest filled with gaps: effects of gap size on water and nutrient cycling in tropical rain forest. Tropenbos-Guyana Program, Georgetown, pp 149–160Google Scholar
  54. Vitousek PM, Field CB (1999) Ecosystem constraints to symbiotic nitrogen fixers: a simple model and its implications. Biogeochemistry 46:179–202Google Scholar
  55. Vitousek PM, Sanford RL (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167CrossRefGoogle Scholar
  56. Vitousek PM et al (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57:1–45CrossRefGoogle Scholar
  57. Walter CA, Bien A (1989) Aerial root-nodules in the tropical legume, Pentaclethra macroloba. Oecologia 80:27–31CrossRefGoogle Scholar
  58. Wieder RK, Wright SJ (1995) Tropical forest litter dynamics and dry season irrigation on Barro-Colorado Island, Panama. Ecology 76:1971–1979CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Alexander R. Barron
    • 1
  • Drew W. Purves
    • 2
  • Lars O. Hedin
    • 1
  1. 1.Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonUSA
  2. 2.Computational Ecology and Environmental Science Group, Microsoft ResearchCambridgeUK

Personalised recommendations