, Volume 165, Issue 2, pp 289–299 | Cite as

Predicting tropical plant physiology from leaf and canopy spectroscopy

  • Christopher E. DoughtyEmail author
  • Gregory P. Asner
  • Roberta E. Martin
Physiological ecology - Original Paper


A broad regional understanding of tropical forest leaf photosynthesis has long been a goal for tropical forest ecologists, but it has remained elusive due to difficult canopy access and high species diversity. Here we develop an empirical model to predict sunlit, light-saturated, tropical leaf photosynthesis using leaf and simulated canopy spectra. To develop this model, we used partial least squares (PLS) analysis on three tropical forest datasets (159 species), two in Hawaii and one at the biosphere 2 laboratory (B2L). For each species, we measured light-saturated photosynthesis (A), light and CO2 saturated photosynthesis (A max), respiration (R), leaf transmittance and reflectance spectra (400–2,500 nm), leaf nitrogen, chlorophyll a and b, carotenoids, and leaf mass per area (LMA). The model best predicted A [r 2  = 0.74, root mean square error (RMSE) = 2.9 μmol m−2 s−1)] followed by R (r 2  = 0.48), and A max (r 2  = 0.47). We combined leaf reflectance and transmittance with a canopy radiative transfer model to simulate top-of-canopy reflectance and found that canopy spectra are a better predictor of A (RMSE = 2.5 ± 0.07 μmol m−2 s−1) than are leaf spectra. The results indicate the potential for this technique to be used with high-fidelity imaging spectrometers to remotely sense tropical forest canopy photosynthesis.


Photosynthesis Tropical forests Spectranomics Spectra Gas exchange Remote sensing CAO 



We thank K. Kinney, J. Kellner, and E. Broadbent for help in the field, and C. Field for advice. This work is funded by a Carnegie Institution fellowship, the NASA Terrestrial Ecology Biodiversity Program, and the John D. and Catherine T. MacArthur Foundation.

Supplementary material

442_2010_1800_MOESM1_ESM.docx (33 kb)
Supplementary material (DOCX 33 kb)


  1. Asner GP, Martin RE (2008) Spectral and chemical analysis of tropical forests: scaling from leaf to canopy levels. Remote Sens Environ 112:3958–3970CrossRefGoogle Scholar
  2. Asner GP, Nepstad D, Cardinot G, Ray D (2004) Drought stress and carbon uptake in an Amazon forest measured with spaceborne imaging spectroscopy. Proc Natl Acad Sci USA 101: 6039–6044Google Scholar
  3. Asner GP, Martin RE, Ford AJ, Metcalfe DJ, Liddell MJ (2009) Leaf chemical and spectral diversity in Australian tropical forests. Ecol Appl 19:236–253CrossRefPubMedGoogle Scholar
  4. Baret F, Vanderbilt VC, Steven MD, Jacquemoud S (1994) Use of spectral analogy to evaluate canopy reflectance sensitivity to leaf optical-properties. Remote Sens Environ 48:253–260CrossRefGoogle Scholar
  5. Castro-Esau KL, Sanchez-Azofeifa GA, Rivard B, Wright SJ, Quesada M (2006) Variability in leaf optical properties of Mesoamerican trees and the potential for species classification. Am J Bot 93:517–530CrossRefGoogle Scholar
  6. Curran P (1989) Global change and remote-sensing. Int J Remote Sens 10:1459–1460CrossRefGoogle Scholar
  7. Dempster WF (1999) Biosphere 2 engineering design. Ecol Eng 13:31–42CrossRefGoogle Scholar
  8. Domingues TF, Martinelli LA, Ehleringer JR (2007) Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazonia, Brazil. Plant Ecol 193:101–112CrossRefGoogle Scholar
  9. Doughty CE, Goulden ML (2008) Are tropical forests near a high temperature threshold? J Geophys Res-Biogeosciences 113. doi:  10.1029/2007JG000632
  10. Farquhar GD, Caemmerer SV, Berry JA (1980) A biochemical-model of photosynthetic Co2 assimilation in leaves of C-3 species. Planta 149:78–90CrossRefGoogle Scholar
  11. Feret JB et al (2008) PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens Environ 112:3030–3043CrossRefGoogle Scholar
  12. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240CrossRefPubMedGoogle Scholar
  13. Gitelson AA, Merzlyak MN (1997) Remote estimation of chlorophyll content in higher plant leaves. Int J Remote Sens 18:2691–2697CrossRefGoogle Scholar
  14. Grace J, Lloyd J, McIntyre J, Miranda AC et al (1995) Carbon-dioxide uptake by an undisturbed tropical rain-forest in Southwest Amazonia, 1992 to 1993. Science 270:778–780Google Scholar
  15. Green RO, Eastwood ML, Sarture CM et al (1998) Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS). Remote Sens Environ 65:227–248Google Scholar
  16. Haaland DM, Thomas EV (1988) Partial least-squares methods for spectral analyses 1 relation to other quantitative calibration methods and the extraction of qualitative information. Anal Chem 60:1193–1202CrossRefGoogle Scholar
  17. Jacquemoud S, Baret F (1990) PROSPECT—a model of leaf optical-properties spectra. Remote Sens Environ 34:75–91CrossRefGoogle Scholar
  18. Kokaly RF (2001) Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration. Remote Sens Environ 75:153–161CrossRefGoogle Scholar
  19. Lee DW, Bone RA, Tarsis SL, Storch D (1990) Correlates of leaf optical-properties in tropical forest sun and extreme-shade plants. Am J Bot 77:370–380CrossRefGoogle Scholar
  20. Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UVVIS spectroscopy. Current Protocols in Food Analytical ChemistryGoogle Scholar
  21. McGroddy ME, Daufresne T, Hedin LO (2004) Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios. Ecology 85:2390–2401CrossRefGoogle Scholar
  22. Myneni RB, Ross J, Asrar G (1989) A review on the theory of photon transport in leaf canopies. Agric For Meteorol 45:1–153CrossRefGoogle Scholar
  23. Phillips OL, Malhi Y, Higuchi N, Laurance WF et al (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282:439–442Google Scholar
  24. Poorter L, Bongers F (2006) Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87:1733–1743CrossRefPubMedGoogle Scholar
  25. Saleska SR, Miller SD, Matross DM, Goulden M et al (2003) Carbon in amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science 302:1554–1557Google Scholar
  26. Sellers PJ (1985) Canopy reflectance, photosynthesis and transpiration. Int J Remote Sens 6:1335–1372CrossRefGoogle Scholar
  27. Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C-3 leaves. Plant Cell Environ 30:1035–1040CrossRefPubMedGoogle Scholar
  28. Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81:337–354CrossRefGoogle Scholar
  29. Sivak MN, Walker DA (1986) Photosynthesis invivo can be limited by phosphate supply. New Phytol 102:499–512CrossRefGoogle Scholar
  30. Smith ML, Martin ME, Plourde L, Ollinger SV (2003a) Analysis of hyperspectral data for estimation of temperate forest canopy nitrogen concentration: comparison between an airborne (AVIRIS) and a spaceborne (Hyperion) sensor. IEEE Trans Geosci Remote Sens 41:1332–1337CrossRefGoogle Scholar
  31. Smith WK, Kelly RD, Welker JM, Fahnestock JT, Reiners WA, Hunt ER (2003b) Leaf-to-aircraft measurements of net CO2 exchange in a sagebrush steppe ecosystem. J Geophys Res-Atmospheres 108(D3):15.1–15.9Google Scholar
  32. Townsend AR, Cleveland CC, Asner GP, Bustamante MMC (2007) Controls over foliar N:P ratios in tropical rain forests. Ecology 88:107–118CrossRefPubMedGoogle Scholar
  33. Verma PK (1993) Remote-Sensing. Curr Sci 64:146–147Google Scholar
  34. Wright IJ et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Christopher E. Doughty
    • 1
    Email author
  • Gregory P. Asner
    • 1
  • Roberta E. Martin
    • 1
  1. 1.Department of Global EcologyCarnegie InstitutionStanfordUSA

Personalised recommendations